Welcome to PHYS 225a Lab

Introduction, class rules, error analysis

Julia Velkovska

Lab objectives

- To introduce you to modern experimental techniques and apparatus.
- Develop your problem solving skills.
- To teach you how to:
- Document an experiment (Elog - a web-based logbook!)
- Interpret a measurement (error analysis)
- Report your result (formal lab report)
- Lab safety:
- Protect people
- Protect equipment

Navigating the 225a Lab web page

http://www.hep.vanderbilt.edu/~velkovja/VUteach/PHY225a

A measurement is not very meaningful without an error estimate!

"Error" does NOT mean "blunder" or "mistake".

No measurement made is ever exact.

- The accuracy (correctness) and precision (number of significant figures) of a measurement are always limited by:
- Apparatus used
- skill of the observer
- the basic physics in the experiment and the experimental technique used to access it
- Goal of experimenter: to obtain the best possible value of some quantity or to validate/falsify a theory.
- What comprises a deviation from a theory ?
- Every measurement MUST give the RANGE of possible values

Types of errors (uncertainties) and how to deal with them:

- Systematic
- Result from mis-calibrated device
- Experimental technique that always gives a measurement higher (or lower) than the true value
- Systematic errors are difficult to assess, because often we don't really understand their source (if we did, we would correct them)
- One way to estimate the systematic error is to try a different method for the same measurement
- Random
- Deal with those using statistics

What type of error is the little Indian making?

Determining Random Errors: if you do just 1 measurement of a quantity of interest

- Instrument limit of error and least count
- least count is the smallest division that is marked on the instrument
- The instrument limit of error is the precision to which a measuring device can be read, and is always equal to or smaller than the least count.
- Estimating uncertainty
- A volt meter may give you 3 significant digits, but you observe that the last two digits oscillate during the measurement. What is the error ?

Example: Determine the Instrument limit

 of error and least count(a)

1	2	3	4	5	6	7	8	9	10	11	12	

b)

1	1	2	3	4	5	6	7	8	9	10	11	12	

6)

Figure 1 Foreachobject and scale abowe deternine the lext count of the scale, the ILE, and the length of the gray rod The scales are all in centimeter.

Determining Random Errors: if you do

 multiple measurements of a quantity of interest- Most random errors have a Gaussian distribution (also called normal distribution)

$$
\begin{aligned}
& P(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left[2 \sigma^{2}\right]} \\
& \mu \text { - mean, } \sigma^{2} \text { - variance }
\end{aligned}
$$

- This fact is a consequence of a very important theorem: the central limit theorem
- When you overlay many random distributions, each with an arbitrary probability distribution, different mean value and a finite variance => the resulting distribution is Gaussian

Average, average deviation, standard deviation

- Average: sum the measured values; divide by the number of measurements

$$
\mu \equiv \bar{x} \equiv\langle x\rangle \equiv \frac{1}{N} \sum_{i=1}^{n} x_{i}
$$

- Average deviation: find the absolute value of the difference between each measured value and the AVERAGE, then divide by the number of measurements
- Sample standard deviation: σ (biased: divide by N or unbiased: divide by $\mathrm{N}-1$) . Use either one in your lab reports.

Example: average, average deviation, standard deviation

Time, t [sec].	$(\mathrm{t}-\langle\mathrm{t}\rangle),[\mathrm{sec}]$	$\mid \mathrm{t}-\langle\mathrm{t}\rangle,[\mathrm{sec}]$	$(\mathrm{t}-\langle \rangle)^{2}\left[\sec ^{2}\right]$
7.4			
8.1			
7.9			
7.0			
$\langle t\rangle=7.6$ average			

Example: average, average deviation,

 standard deviation| Time, t,
 [sec]. | $(\mathrm{t}-<\mathrm{t}>),[\mathrm{sec}]$ | $\|\mathrm{t}-<\mathrm{t}\rangle \mid,[\mathrm{sec}]$ | $(\mathrm{t}-<\mathbf{t}>)^{2}\left[\mathbf{s e c}^{2}\right]$ |
| :---: | :---: | :---: | :---: |
| 7.4 | -0.2 | 0.2 | 0.04 |
| 8.1 | 0.5 | 0.5 | 0.25 |
| 7.9 | 0.3 | 0.3 | 0.09 |
| 7.0 | -0.6 | 0.6 | 0.36 |
| $<\mathrm{t}>=7.6$
 average | $<\mathrm{t}-<\mathrm{t} \gg=0.0$ | $\langle \| \mathrm{t}-<\mathrm{t}>\mid>=0.4$
 Average
 deviation | (unbiased) Std.
 dev $=0.50$ |

Some Exel functions

- =SUM(A2:A5)

Find the sum of values in the range of cells A2 to A5.

- .=AVERAGE(A2:A5) Find the average of the numbers in the range of cells A2 to A5.
- =AVEDEV(A2:A5) Find the average deviation of the numbers in the range of cells A2 to A5.
- =STDEV(A2:A5) Find the sample standard deviation (unbiased) of the numbers in the range of cells A2 to A5.
- =STDEVP(A2:A5) Find the sample standard deviation (biased) of the numbers in the range of cells A2 to A5.

Range of possible values: confidence intervals

- Suppose you measure the density of calcite as $2.65 \pm$ $0.04) \mathrm{g} / \mathrm{cm}^{3}$. The textbook value is $2.71 \mathrm{~g} / \mathrm{cm}^{3}$. Do the two values agree? Rule of thumb: if the measurements are within 2σ-they agree with each other. The probability that you will get a value that is outside this interval just by chance is less than 5%..

Why take many measurements ?

- Note the in the definition of σ, there is a $\operatorname{sqrt}(\mathrm{N})$ in the denominator, where N is the number of measurements

Indirect measurements

- You want to know quantity X, but you measure Y and Z
- You know that X is a function of Y and Z
- You estimate the error on Y and Z : How to get the error of X ? The procedure is called "error propagation".
- General rule: f is a function of the independent variables $u, v, w . .$. etc. All of these are measured and their errors are estimated. Then to get the error on f :

$$
f(u, v, w \ldots)
$$

$$
\sigma_{f}^{2}=\sigma_{u}^{2}\left(\frac{\partial f}{\partial u}\right)^{2}+\sigma_{v}^{2}\left(\frac{\partial f}{\partial v}\right)^{2}+\sigma_{w}^{2}\left(\frac{\partial f}{\partial w}\right)^{2}+\ldots
$$

How to propagate the errors: specific examples (proof and examples done on the white board)

- Addition and subtraction: $x+y ; x-y$
- Add absolute errors
- Multiplication by an exact number: a*x
- Multiply absolute error by the number
- Multiplication and division
- Add relative errors

Another common case: determine the variable of interest as the slope of a line

- Linear regression: what does it mean ?
- How do we get the errors on the parameters of the fit?

Linear regression I

- You want to measure speed
- You measure distance
- You measure time
- Distance/time = speed
- You made 1 measurement : not very accurate
- You made 10 measurements
- You could determine the speed from each individual measurement, then average them
- But this assumes that you know the intercept as well as the slope of the line distance/time
- Many times, you have a systematic error in the intercept
- Can you avoid that error propagating in your measurement of the slope?

Linear regression: least square fit

- Data points $\left(x_{i}, y_{i}\right), i=1 \ldots N$
- Assume that $y=a+b x$: straight line
- Find the line that best fits that collection of points that you measured
- Then you know the slope and the intercept
- You can then predict y for any value of x
- Or you know the slope with accuracy which is better than any individual measurement
- How to obtain that: a least square fit

Residuals:

- The vertical distance between the line and the data points
- A linear regression fit finds the line which minimizes the sum of the squares of all residuals

How good is the fit? r^{2-} the regression

 parameter- If there is no correlation between x and $\mathrm{y}, \mathrm{r}^{2}=0$
- If there is a perfect linear relation between x and y, the $r^{2}=1$

Exel will also give you the error on the

 slope + a lot more (I won't go into it)- Use:Tools/Data analysis/Regression
- You get a table like this:

	X	Y	Z	AA
21		Coefficients	Standard Error	t Statistic
22				
23	Intercept	7.76523109	2.45280031	3.16586355
24	Distance	1.86142516	0.18203112	10.225862
errors				

