

Topics for Biological and Physical Sciences Sections of the MCAT – Effective April 2003

Biology

Molecular Biology: Enzymes and Metabolism

- A. ENZYME STRUCTURE AND FUNCTION
 - 1. Function of enzymes in catalyzing biological reactions
 - 2. Reduction of activation energy
 - 3. Substrates and enzyme specificity

B. CONTROL OF ENZYME ACTIVITY

- 1. Feedback inhibition
- 2. Competitive inhibition
- 3. Non-competitive inhibition

C. BASIC METABOLISM

- 1. Glycolysis, anaerobic and aerobic, substrates and products
- 2. Krebs cycle, substrates and products, general features of the pathway
- 3. Electron transport chain and oxidative phosphorylation, substrates and products, general features of the pathway
- 4. Metabolism of fats and proteins

Molecular Biology: DNA and Protein Synthesis

- I. DNA STRUCTURE AND FUNCTION
 - A. DNA STRUCTURE AND FUNCTION
 - 1. Watson-Crick model of DNA; double helix
 - 2. DNA composition: purine and pyrimidine bases, sugars, phosphate
 - 3. Base pairing specificity: A with T, G with C
 - 4. Function in transmission of genetic information

B. DNA REPLICATION

- 1. Mechanism of replication: separation of strands, specific coupling of free nucleic acids
- 2. Semi-conservative nature of replication

C. REPAIR OF DNA

- 1. Repair during replication
- 2. Repair of mutations

D. RECOMBINANT DNA

- 1. Restriction enzymes
- 2. Hybridization
- 3. Gene cloning

II. PROTEIN SYNTHESIS

- A. GENETIC CODE
 - 1. Central Dogma: DNA \rightarrow RNA \rightarrow protein
 - 2. Codon-anticodon relationship
 - 3. Missense, nonsense codons
 - 4. Initiation, termination codons

B. TRANSCRIPTION

- 1. Messenger RNA
- 2. tRNA, rRNA
- 3. Mechanism of transcription

C. TRANSLATION

- 1. Roles of mRNA, tRNA, rRNA
- 2. Role and structure of ribosomes

Molecular Biology: Eukaryotes

A. EUKARYOTIC CHROMOSOME ORGANIZATION

- 1. Chromosomal proteins
- 2. Telomeres, centromeres

B. CONTROL OF GENE EXPRESSION IN EUKARYOTES

- 1. Transcription regulation
- 2. DNA binding proteins, transcription factors
- 3. Cancer as a failure of normal cellular controls, oncogenes
- 4. Post-transcriptional control [GEC]

Genetics

A. MENDELIAN CONCEPTS

- 1. Phenotype and genotype
- 2. Gene
- 3. Locus
- 4. Allele: single and multiple
- 5. Homo- and heterozygosity
- 6. Wild type
- 7. Recessiveness
- 8. Complete dominance
- 9. Co-dominance
- 10. Incomplete dominance, leakage, penetrance, expressivity
- 11. Gene pool

B. MEIOSIS AND GENETIC VARIABILITY

- 1. Significance of meiosis
- 2. Important differences between meiosis and mitosis
- 3. Segregation of genes
 - a. Independent assortment
 - b. linkage
 - c. recombination
 - d. single crossovers
 - e. double crossovers
- 4. Sex-linked characteristics
 - a. very few genes on Y chromosome
 - b. sex determination
 - c. cytoplasmic inheritance

5. Mutation

- a. general concept of mutation-error in DNA sequence
- b. types of mutations: random, translation error, transcription error, base substitution, inversion, addition, deletion, translocation, mispairing
- c. advantageous vs. deleterious mutation
- d. inborn errors of metabolism
- e. relationship of mutagens to carcinogens]

C. ANALYTIC METHODS

- 1. Hardy-Weinberg Principle
- 2. Test cross: back cross, concepts of parental, F1 and F2 generations

Microbiology

A. FUNGI

- 1. General characteristics
- 2. General aspects of life cycle

B. VIRUS STRUCTURE

- 1. General structural characteristics, nucleic acid and protein
- 2. Lack organelles, nucleus
- 3. Structural aspects of typical bacteriophage
- 4. Genomic content RNA or DNA
- 5. Size relative to bacteria and eukaryotic cells

C. VIRAL LIFE CYCLE

- 1. Self-replicating biological units that must reproduce within specific host cell
- 2. Generalized phage and animal virus life cycles:
 - a. attachment to host, penetration of cell membrane or cell wall, and entry of viral genetic material
 - b. use of host synthetic mechanism to replicate viral components
 - c. self-assembly and release of new viral particles
- 3. Retrovirus life cycle: integration into host DNA
- 4. Transduction: transfer of genetic material by viruses [MIC]

C. PROKARYOTIC CELL: STRUCTURE, BACTERIA

- 1. Lack of nuclear membrane, mitotic apparatus
- 2. Lack of typical eukaryotic organelles
- 3. Major classifications of bacteria by shape: bacilli (rod-shaped); spirilli (spiral shaped); cocci (spherical); eubacteria; archaea
- 4. Presence of cell wall in bacteria
- 5. Flagellar propulsion, mechanism

D. PROKARYOTIC CELL: GROWTH AND PHYSIOLOGY

- 1. Reproduction by fission
- 2. High degree of genetic adaptability, acquisition of antibiotic resistance
- 3. Exponential growth
- 4. Existence of anaerobic and aerobic variants
- 5. Parasitic and symbiotic

E. PROKARYOTIC CELL: GENETICS

- 1. Existence of plasmids, extragenomic DNA
- 2. Transformation: incorporation into bacterial genome of DNA fragments from external medium

Generalized Eukaryotic Cell

A. NUCLEUS

- 1. Defining characteristics: membrane bound nucleus, presence of organelles, meiotic division
- 2. Nucleus: compartmentalization, storage of genetic information
- 3. Nucleolus: location and function
- 4. Nuclear envelope, nuclear pores

B. MEMBRANE-BOUND ORGANELLES

- 1 Mitochondria
 - a. site of ATP production
 - b. self-replication
 - c. inner and outer membrane
- 2. Lysosomes: membrane vesicle containing hydrolytic enzymes
- 3. Endoplasmic reticulum:
 - a. rough and smooth components
 - b. rough endoplasmic reticulum site of ribosomes
 - c. double membrane structure, role in membrane biosynthesis
 - d. role in biosynthesis of secreted proteins
- 4. Golgi apparatus: general structure and role in packaging and secretion

C. PLASMA MEMBRANE

- 1. General function in cell containment
- 2. Protein and lipid components, fluid mosaic model
- 3. Osmosis
- 4. Passive and active transport
- 5. Membrane channels
- 6. Sodium/potassium pump
- 7. Membrane receptors
- 8. Membrane potential
- 9. Exocytosis and endocytosis
- 10. Cell-cell communication (General concepts of cellular adhesion)
 - a. gap junctions
 - b. tight junctions
 - c. desmosomes

D. CYTOSKELETON

- 1. General function in cell support and movement
- 2. Microfilaments: composition and role in cleavage and contractility
- 3. Microtubules: composition and role in support and transport
- 4. Intermediate filaments, role in support
- 5. Composition and function of eukaryotic cilia and flagella
- 6. Centrioles, microtubule organizing centers

E. MITOSIS

- 1. Mitotic process: prophase, metaphase, anaphase, telophase, interphase
- 2. Mitotic structures:
 - a. centrioles, asters, spindles
 - b. chromatids, centromeres, kinetochores
 - c. nuclear membrane breakdown and reorganization
 - d. mechanisms of chromosome movement
- 3. Phases of cell cycle: G_0 , G_1 , S, G_2 , M
- 4. Growth arrest

Specialized Eukaryotic Cells and Tissues

- A. NERVE CELL/NEURAL
 - 1. Cell body: site of nucleus, organelles
 - 2. Axon: structure and function
 - 3. Dendrites: branched extensions of cell body
 - 4. Myelin sheath, Schwann cells, insulation of axon
 - 5. Nodes of Ranvier: propagation of nerve impulse along axon
 - 6. Synapse: site of impulse propagation between cells
 - 7. Synaptic activity
 - a. transmitter molecules
 - b. synaptic knobs
 - c. fatigue
 - d. propagation between cells without resistance loss
 - 8. Resting potential: electrochemical gradient
 - 9. Action potential
 - a. threshold, all-or-none
 - b. sodium/potassium pump
 - 10. Excitatory and inhibitory nerve fibers: summation, frequency of firing

B. MUSCLE CELL/CONTRACTILE

- 1. Structural characteristics of striated, smooth, and cardiac muscle
- 2. Abundant mitochondria in red muscle cells-ATP source
- 3. Organization of contractile elements: actin and myosin filaments, crossbridges, sliding filament model
- 4. Calcium regulation of contraction
- 5. Sacromeres: "I" and "A" bands, "M" and "Z" lines, "H" zone (General structure only)
- 6. Presence of troponin and tropomyosin
- 7. Calcium regulation of contraction

C. OTHER SPECIALIZED CELL TYPES

- 1. Epithelial cells (cell types, simple epithelium, stratified epithelium)
- 2. Endothelial cells
- 3. Connective tissue cells (major cell types, fiber types, loose vs. dense, cartilage, extracellular matrix)

Nervous and Endocrine Systems

A. ENDOCRINE SYSTEM: HORMONES

- 1. Function of endocrine system: specific chemical control at cell, tissue, and organ level
- 2. Definition of endocrine gland, hormone
- 3. Major endocrine glands: names, locations, products
- 4. Major types of hormones

B. ENDOCRINE SYSTEM: MECHANISMS OF HORMONE ACTION

- 1. Cellular mechanisms of hormone action
- 2. Transport of hormones: blood supply
- 3. Specificity of hormones: target tissue
- 4. Integration with nervous system: feedback control

C. NERVOUS SYSTEM: STRUCTURE AND FUNCTION

- 1. Major functions
 - a. high level control and integration of body systems
 - b. adaptive capability to external influences
 - c. sensory input
 - d. integrative and cognitive ability
- 2. Organization of vertebrate nervous system
- 3. Sensor and effector neurons
- 4. Sympathetic and parasympathetic nervous systems: antagonistic control
- 5. Reflexes
 - a. feedback loop, reflex arc
 - b. role of spinal cord, brain
 - c. efferent control

D. NERVOUS SYSTEM: SENSORY RECEPTION AND PROCESSING

- 1. Skin, proprioceptive, and somatic sensors
- 2. Olfaction, taste
- 3. Hearing
 - a. ear structure
 - b. mechanism of hearing
- 4. Vision
 - a. light receptors
 - b. eye structure
 - c. visual image processing

Circulatory, Lymphatic, and Immune Systems

A. CIRCULATORY SYSTEM

- 1. Functions: circulation of oxygen, nutrients, hormones, ions and fluids, removal of metabolic waste
- 2. Role in thermoregulation
- 3. Four-chambered heart: structure and function
- 4. Systolic and diastolic pressure
- 5. Pulmonary and systemic circulation
- 6. Arterial and venous systems
 - a. structural and functional differences
 - b. pressure and flow characteristics

- 7. Capillary beds
 - a. mechanisms of gas and solute exchange
 - b. mechanism of heat exchange
 - c. source of peripheral resistance
- 8. Composition of blood
 - a. plasma, chemicals, blood cells
 - b. erythrocyte production and destruction; spleen, bone marrow
 - c. regulation of plasma volume
 - d. coagulation, clotting mechanisms
- 9. Oxygen transport by blood
 - a. hemoglobin, hematocrit
 - b. oxygen content
 - c. oxygen affinity
- 10. Details of oxygen transport (biochemical characteristics of hemoglobin) modification of oxygen affinity

B. LYMPHATIC SYSTEM

Major functions

- a. equalization of fluid distribution
- b. transport of proteins and large glycerides
- c. production of lymphocytes involved in immune reactions
- d. return of materials to the blood
- e. Composition of lymph: similarity to blood plasma; substances transported
- f. Source of lymph: diffusion from capillaries by differential pressure
- g. Lymph nodes: activation of lymphocytes

C. IMMUNE SYSTEM

- 1. Cells
 - a. T-lymphocytes
 - b. B-lymphocytes
- 2. Tissues
 - a. bone marrow
 - b. spleen
 - c. thymus
 - d. lymph nodes
- 3. Concept of antigen and antibody
- 4. Structure of antibody molecule
- 5. Mechanism of stimulation by antigen

Respiration System

- A. RESPIRATORY SYSTEM
 - 1. General function
 - a. gas exchange, thermoregulation
 - b. protection against disease, particulate matter
 - 2. Breathing mechanisms
 - a. diaphragm, rib cage, differential pressure
 - b. resiliency and surface tension effects

Skin System

A. SKIN SYSTEM

- 1. Functions in homeostasis and osmoregulation
- 2. Functions in thermoregulation
 - a. hair, erectile musculature
 - b. fat layer for insulation
 - c. sweat glands, location in dermis
 - d. vasoconstriction and vasodilation in surface capillaries
- 3. Physical protection
 - a. nails, calluses, hair
 - b. protection against abrasion, disease organisms
- 4. Structure (detail structure)
 - a. layer differentiation
 - b. relative impermeability to water

Digestive and Excretory Systems

A. DIGESTIVE SYSTEM

- 1. Ingestion
 - a. saliva as lubrication and source of enzymes
 - b. epiglottal action
 - c. pharynx function in swallowing
 - d. esophagus, transport function
- 2. Stomach
 - a. storage and churning of food
 - b. low pH, gastric juice, mucal protection against self-destruction
 - c. production of digestive enzymes, site of digestion
 - d. structure
- 3. Liver
 - a. production of bile
 - b. role in nutrient metabolism, vitamin storage
 - c. role in blood glucose regulation, detoxification
 - d. gross structure
- 4. Bile
 - a. storage in gall bladder
 - b. function
- 5. Pancreas
 - a. production of enzymes
 - b. transport of enzymes to small intestine
 - c. structure (gross)
- 6. Small Intestine
 - a. absorption of food molecules
 - b. function and structure of villi
 - c. production of enzymes, site of digestion
 - d. neutralization of stomach acid
 - e. structure (gross)
- 7. Large Intestine
 - a. anatomic subdivisions
 - b. absorption of water
 - c. bacterial flora
 - d. structure (gross)

- 8. Rectum: storage and elimination of waste, feces
- 9. Muscular control
 - a. sphincter muscle
 - b. peristalsis

B. EXCRETORY SYSTEM

- 1. Roles in homeostasis
 - a. blood pressure
 - b. osmoregulation
 - c. acid-base balance
 - d. removal of soluble nitrogenous waste
- 2. Kidney structure
 - a. cortex
 - b. medulla
- 3. Nephron structure
 - a. glomerulus
 - b. Bowman's capsule
 - c. proximal tubule
 - d. loop of Henle
 - e. distal tubule
 - f. collecting duct
- 4. Formation of urine
 - a. glomerular filtration
 - b. secretion and reabsorption of solutes
 - c. concentration of urine
 - d. counter-current multiplier mechanism
- 5. Storage and elimination: ureter, bladder, urethra

Muscle and Skeletal Systems

A. MUSCLE SYSTEM

- 1. Important functions
 - a. support, mobility
 - b. peripheral circulatory assistance
 - c. thermoregulation (shivering reflex)
- 2. Structure of three basic muscle types: striated, smooth, cardiac
- 3. Nervous control
 - a. motor neurons
 - b. neuromuscular junctions, motor end plates
 - c. voluntary and involuntary muscles
 - d. sympathetic and parasympathetic innervation

B. SKELETAL SYSTEM

- 1. Functions
 - a. structural rigidity and support
 - b. calcium storage
 - c. physical protection
- 2. Skeletal structure
 - a. specialization of bone types, structures
 - b. joint structures
 - c. endo- vs. exoskeleton
- 3. Cartilage: structure and function

- 4. Ligaments, tendons
- 5. Bone structure
 - a. calcium/protein matrix
 - b. bone growth

Reproductive System and Development

- A. REPRODUCTIVE SYSTEM
 - 1. Male and female reproductive structures and their functions
 - a. gonads
 - b. genitalia
 - c. differences between male and female structures
 - 2. Gametogenesis by meiosis
 - 3. Ovum and sperm
 - a. differences in formation
 - b. differences in morphology
 - c. relative contribution to next generation
 - 4. Reproductive sequence: fertilization; implantation; development; birth

B. EMBRYOGENESIS

- 1. Stages of early development: order and general features of each
 - a. fertilization
 - b. cleavage
 - c. blastula formation
 - d. gastrulation
 - i. first cell movements
 - ii. formation of primary germlayers: endoderm, mesoderm, ectoderm
 - e. neurulation
- 2. Major structures arising out of primary germ layers

C. DEVELOPMENTAL MECHANISMS

- 1. Cell specialization
 - a. determination
 - b. differentiation
 - *c*. tissue types
- 2. Cell communication in development
- 3. Gene regulation in development
- 4. Programmed cell death

Evolution

- A. EVOLUTION
 - 1. Natural selection
 - a. fitness concept
 - b. selection by differential reproduction
 - c. concepts of natural and group selection
 - d. evolutionary success as increase in percent representation in the gene pool of the next generation

- 2. Speciation
 - a. definition of species
 - b. polymorphism
 - c. adaptation and specialization
 - d. concepts of ecological niche, competition
 - e. concept of population growth through competition
 - f. inbreeding
 - g. outbreeding
 - h. bottlenecks
 - i. divergent, parallel, and convergent evolution
 - j. Symbiotic relationships
 - a. Parasitism
 - b. Commensalism
- 3. Ontogeny recapitulates phylogeny
- 4. Evolutionary time as measured by gradual random changes in genome
- 5. Origin of life

B. COMPARATIVE ANATOMY

- 1. Chordate features
 - a. notochord
 - b. pharangeal pouches, brachial arches
 - c. dorsal nerve cord
- 2. Vertebrate phylogeny: vertebrate classes and relations to each other

Organic Chemistry

The Covalent Bond

- 1. σ and π bonds (No Alkenes)
 - a. hybrid orbitals: sp^3 , sp^2 , sp and respective geometries
 - b. valence shell electron pair repulsion and the prediction of shapes of molecules (e.g., NH₃, H₂O, CO₂)
 - c. structural formulas for molecules involving H, C, N, O, F, S, P, Si, Cl
 - d. delocalized electrons and resonance in ions and molecules
- 2. Multiple bonding (No Alkenes)
 - a. its effect on bond length and bond energies
 - b. rigidity in molecular structure
- 3. Stereochemistry of covalently bonded molecules
 - a isomers
 - i. structural isomers
 - ii. stereoisomers (e.g. diastereomers, enantiomers, cis/trans isomers)
 - iii. conformational isomers
 - b. polarization of light, specific rotation
 - c. absolute and relative configuration
 - i. conventions for writing R and S forms
 - ii. conventions for writing E and Z forms
 - d. racemic mixtures, separation of enantiomers by biological means

Molecular Strucure and Spectra

- 1. Absorption spectroscopy
 - a. infrared region

- i. intramolecular vibrations and rotations
- ii. recognizing common characteristic group absorptions, fingerprint region
- b. visible region
 - i. absorption in visible region gives complementary color (e.g., carotene)
 - ii. effect of structural changes on absorption (e.g., indicators)
- c. ultraviolet region (No Alkenes)
 - i. π -electron and non-bonding electron transition
 - ii. conjugated systems
- 2. Mass spectroscopy: m/e ratio, parent peak
- 3. NMR spectroscopy
 - a. protons in a magnetic field; equivalent protons
 - b. spin-spin splitting

Separations and Purifications

- 1. Extraction: distribution of solute between two immiscible solvents
- 2. Distillation
- 3. Chromatography-basic principles involved in separation process
 - a. column chromatography
 - i. gas-liquid chromatography
 - b. paper chromatography 1, u
 - c. thin-layer chromotography
- 4. Recrystalization; solvent choice from solubility data

Hydrocarbons

- A. ALIPHATIC ALKANES
 - 1. Description
 - a. nomenclature
 - b. physical properties
 - 2. Important reactions
 - a. combustion
 - b. substitution reactions with halogens, etc.
 - 3. General principles
 - a. stability of free radicals; chain reaction mechanism; inhibition
 - b. ring strain in cyclic compounds
 - c. bicyclic molecules

Oxygen Containing Compounds

- A. ALCOHOLS
 - 1. Description
 - a. nomenclature
 - b. physical properties
 - c. infrared absorption of OH group

2. Important reactions

- a. substitution reactions: S_N1 or S_N2 , depending on alcohol and derived alkyl halide
- b. oxidation
- c. pinacol rearrangement in polyhydroxyalcohols; synthetic uses
- d. protection of alcohols
- e. reactions with SOCl₂ and PBr₃
- f. preparation of mesylates and tosylates
- g. esterification
- h. inorganic esters
- 3. General principles
 - a. hydrogen bonding
 - b. acidity of alcohols compared to other classes of oxygen-containing compounds
 - c. effect of chain branching on physical properties

B. ALDEHYDES AND KETONES

- 1. Description
 - a. nomenclature
 - b. physical properties
 - c. infrared absorption of C=O bond
- 2. Important reactions
 - a. nucleophilic addition reactions at C=O bond
 - i. acetal, hemiacetal
 - ii. imine, enamine
 - b. reactions at adjacent positions
 - i. haloform reactions
 - ii. aldol condensation
 - iii. oxidation
 - c. 1,3-dicarbonyls: internal H-bonding
 - d. keto-enol tautomerism
 - e. organometallic reagents
 - f. acetoacetic ester syntheses
 - g. Wolff-Kishner reaction
 - h. Grignard reagents
- 3. General principles
 - a. effect of substituents on reactivity of C=O; steric hindrance
 - b. acidity of αH; carbanions
 - c. α , β -unsaturated carbonyls—resonance structures

C. CARBOXYLIC ACIDS

- 1. Description
 - a. nomenclature
 - b. physical properties and solubility
 - c. infrared absorption

- 2. Important reactions
 - a. carboxyl group reactions
 - i. nucleophilic attack
 - ii. reduction
 - iii. decarboxylation
 - iv. esterification
 - b. reactions at 2 position
 - i. halogenation
 - ii. substitution reactions
- 3. General principles
 - a. H bonding
 - b. dimerization
 - c. acidity of the carboxyl group
 - d. inductive effect of substituents
 - e. resonance stability of carboxylate anion

D. ACID DERIVATIVES (ACID CHLORIDES, ANHYDRIDES, AMIDES, ESTERS)

- 1. Description
 - a. nomenclature
 - b. physical properties
 - c. infrared absorption
- 2. Important reactions
 - a. preparation of acid derivatives
 - b. nucleophilic substitution
 - c. Hoffman degradation of amides; migration of aryl group
 - d. transesterification
 - e. hydrolysis of fats and glycerides (saponification)
 - f. hydrolysis of amides
- 3. General principles
 - a. relative reactivity of acid derivatives
 - b. steric effects
 - c. electronic effects
 - d. strain (e.g., β-lactams)

E. KETO ACIDS AND ESTERS

- 1. Description; nomenclature
- 2. Important reactions
 - a. decarboxylation
 - b. acetoacetic ester synthesis
- 3. General principles
 - a. acidity of α hydrogen and β -keto ester
 - b. keto-enol tautomerism

Amines

- 1. Description
 - a. nomenclature
 - b. stereochemistry and physical properties
 - c. infrared absorption

- 2. Major reactions
 - a. amide formation
 - b. reactions with nitrous acid
 - c. alkylation
 - d. Hoffman elimination
- 3. General principles
 - a. basicity
 - b. stabilization of adjacent carbonium ions (carbocations)
 - c. effect of substituents on basicity of aromatic amines

Biological Molecules

- A. CARBOHYDRATE
 - 1. Description
 - a. nomenclature and classification, common names
 - b. absolute configuration
 - c. cyclic structure and conformations of hexoses
 - d. epimers and anomers
 - 2. Hydrolysis of the glycoside linkage

B. AMINO ACIDS AND PROTEINS

- 1. Description
 - a. absolute configuration at the α position
 - b. amino acids as dipolar ions classification
 - c. classification
 - i. acidic or basic
 - ii. hydrophobic or hydrophilic
- 2. Reactions
 - a. peptide linkage
 - b. hydrolysis
- 3. General principles
 - a. 1° structure of proteins
 - b. 2° structure of proteins

C. LIPIDS

Description; structure

- a. steroids
- b. terpenes
- c. triacyl glycerols
- d. free fatty acids

D. PHOSPHORUS COMPOUNDS

- 1. Description
 - a. structure of phosphoric acids (anhydrides and esters)
- 2. Important reactions
 - a. Wittig reaction

General Concepts in Organic Chemistry

- A. CLASSIFICATION OF ORGANIC COMPOUNDS ACCORDING TO FUNCTIONAL GROUPS
- B. REACTIONS, REACTION MECHANISMS, AND THE PRINCIPLES INVOLVED (metabolic enzyme-controlled reactions and pathways are not included in this topic area)
- C. STRUCTURE AND STEREOCHEMISTRY OF ORGANIC COMPOUNDS
- D. IUPAC NOMENCLATURE OF ORGANIC COMPOUNDS
- E. MULTISTEP SYNTHESIS/RETROSYNTHESIS

General Chemistry

Electronic Structure and Periodic Table

- A. ELECTRONIC STRUCTURE
 - 1. Orbital structure of hydrogen atom, principal quantum number n, number of electrons per orbital
 - 2. Ground state, excited states
 - 3. Absorption and emission spectra
 - 4. Quantum numbers l, m, s, and number of quantum states (electrons) per orbital
 - 5. Common names and geometric shapes for orbitals s, p, d
 - 6. Conventional notation for electronic structure
 - 7. Bohr atom
 - 8. Effective nuclear charge

B. THE PERIODIC TABLE: CLASSIFICATION OF ELEMENTS INTO GROUPS BY ELECTRONIC STRUCTURE

- 1. Alkali metals; their chemical characteristics
- 2. Alkaline earth metals; their chemical characteristics
- 3. Halogens; their chemical characteristics
- 4. Noble gases; their physical and chemical characteristics
- 5. Transition metals
- 6. Representative elements
- 7. Metals and non-metals
- 8. Oxygen group

C. THE PERIODIC TABLE: VARIATIONS OF CHEMICAL PROPERTIES WITH GROUP AND ROW

- 1. Electronic structure
 - a. the representative elements
 - b. the noble gases
 - c. transition metals
- 2. Valence electrons
- 3. First and second ionization energy
 - a. definition
 - b. prediction from electronic structure for elements in different groups or rows
- 4. Electron affinity
 - a. definition
 - b. variation with group and row

- 5. Electronegativity
 - a. definition
 - b. comparative values for some representative elements and important groups
- 6. Electron shells and the sizes of atoms

Bonding

- A. THE IONIC BOND (ELECTROSTATIC FORCES BETWEEN IONS)
 - 1. $E = kQ_1Q_2/d$
 - 2. E = lattice energy
 - 3. Force attraction = $R(n+e)(n-e)/d^2$
- B. THE COVALENT BOND
 - 1. σ and π bonds
 - a. hybrid orbitals: sp³, sp², sp and respective geometries
 - b. valence shell electron pair repulsion and the prediction of shapes of molecules (e.g., NH₃, H₂O, CO₂)
 - 2. Lewis electron dot formulas
 - a. resonance structures
 - b. formal change
 - c. Lewis acids and bases
 - 3. Partial ionic character
 - a. role of electronegativity in determining charge distribution
 - b. dipole moment

Phases and Phase Equilibria

- A. GAS PHASE
 - 1. Absolute temperature, K scale
 - 2. Pressure, simple mercury barometer
 - 3. Molar volume at 0° C and 1 atm = 22.4 mol/L
 - 4. Ideal gas
 - a. definition
 - b. ideal gas law PV=nRT
 - i. Boyle's law
 - ii. Charles' law
 - iii. Avogadro's number
 - 5. Kinetic molecular theory of gases
 - 6. Deviation of real-gas behavior from ideal gas law
 - a. qualitative
 - b. quantitative (Van der Waals' equation)
 - 7. Partial pressure, mole fraction
 - 8. Dalton's law relating partial pressure to composition
- B. LIQUID PHASE: INTERMOLECULAR FORCES
 - 1. Hydrogen bonding
 - 2. Dipole interactions
 - 3. Van der Waals' forces (London dispersion forces)
- C. PHASE EQUILIBRIA
 - 1. Phase changes and phase diagrams
 - 2. Freezing point, melting point, boiling point

- 3. Molality
- 4. Colligative properties
 - a. vapor pressure lowering (Raoult's law)
 - b. boiling point elevation $((\Delta T_b = k_b m))$
 - c. freezing point depression $((\Delta T_f = -k_f m))$
 - d. osmotic pressure
- 5. Colloids
- 6. Henry's Law

Stoichiometry

- 1. Molecular weight
- 2. Empirical formula versus molecular formula
- 3. Metric units commonly used in the context of chemistry
- 4. Description of composition by % mass
- 5. Mole concept; Avagadro's number
- 6. Definition of density
- 7. Oxidation number
 - a. common oxidizing and reducing agents
 - b. disproportionation reactions
 - c. redox titration
- 8. Description of reactions by chemical equations
 - a. conventions for writing chemical equations
 - b. balancing equations, including oxidation-reduction equations
 - c. limiting reactants
 - d. theoretical yields

Thermodynamics and Thermochemistry

A. ENERGY CHANGES IN CHEMICAL REACTIONS-THERMOCHEMISTRY

- 1. Thermodynamic system, state function
- 2. Conservation of energy
- 3. Endothermic/exothermic reactions
 - a. enthalpy H and standard heats of reaction and formation
 - b. Hess' law of heat summation
- 4. Bond dissociation energy as related to heats of formation
- 5. Measurement of heat changes (calorimetry); heat capacity; specific heat (specific heat of water = 1 cal/°C)
- 6. Entropy as a measure of "disorder"; relative entropy for gas, liquid, and crystal states
- 7. Free energy G
- 8. Spontaneous reactions and ΔG°

B. THERMODYNAMICS

- 1. Zeroth law: concept of temperature
- 2. First law: $(\Delta E = Q W \text{ (conservation of energy)})$
- 3. Equivalence of mechanical, chemical, electrical and thermal energy units
- 4. Second law: concept of entropy
- 5. Temperature scales, conversion
- 6. Heat transfer: conduction, convection, radiation
- 7. Specific heat, specific heat of water $(1 \text{ cal } / {}^{\circ}\text{C} \cdot \text{g})$
- 8. Heat of fusion, heat of vaporization
- 9. PV diagram: work done = area under or enclosed by curve

10. Calorimetry

Rate Processes in Chemical Reactions – Kinetics and Equlibrium

- 1. Reaction rates
- 2. Dependence of reaction rate upon concentration of reactants; rate law
 - a. rate constant
 - b. reaction order
- 3. Rate determining step
- 5. Kinetic control versus thermodynamic control of a reaction
- 6. Catalysts; the special case of enzyme catalysis
- 7. Equilibrium in reversible chemical reactions
 - a. Law of Mass Action
 - b. the equilibrium constant
 - c. application of LeChatelier's principle
- 8. Relationship of the equilibrium constant and ΔG°

Solution Chemistry

A. IONS IN SOLUTION

- 1. Anion, cation; common names, formulas and charges for familiar ions (e.g., NH₄⁺ ammonium, PO₄³⁻ phosphate, SO₄²⁻ sulfate)
- 2. Hydration, the hydronium ion

B. SOLUBILITY

- 1. Units of concentration (e.g., molarity)
- 2. Solubility product constant; the equilibrium expression
- 3. Common-ion effect; its use in laboratory separations
 - a. complex ion formation]
 - b. complex ions and solubility
 - c. solubility and pH

Acids/Bases

A. ACID/BASE EQUILIBRIA

- 1. Brønsted definition of acid, base
- 2. Ionization of water
 - a. K_w , its approximate value $(K_w = [H^+][OH^-] = 10^{-14} \text{ at STP})$
 - b. definition of pH; pH of pure water
- 3. Conjugate acids and bases (e.g., amino acids)
- 4. Strong acids and bases (common examples, e.g., nitric, sulfuric)
- 5. Weak acids and bases (common examples, e.g. acetic, benzoic)
 - a. dissociation of weak acids and bases with or without added salt
 - b. hydrolysis of salts of weak acids or bases
 - c. calculation of pH of solutions of salts of weak acids or bases
- 6. Equilibrium constants K_a and K_b : pK_a , pK_b
- 7. Buffers
 - a. definition and concepts (common buffer systems)
 - b. influence on titration curves

B. TITRATION

- 1. Indicators
- 2. Neutralization
- 3. Interpretation of titration curves

4. Redox titration

Electrochemistry

- 1. Electrolytic cell
 - a. electrolysis
 - b. anode, cathode
 - c. electrolyte
 - d. Faraday's law relating amount of elements deposited (or gas liberated) at an electrode to current
 - e. electron flow; oxidation, and reduction at the electrodes
- 2. Galvanic or voltaic cell
 - a. half reactions
 - b. reduction potentials; cell potential
 - c. direction of electron flow

Physics

Translational Motion

- 1. Units and dimensions
- 2. Vectors, components
- 3. Vector addition
- 4. Speed, velocity (average and instantaneous)
- 5. Acceleration
- 6. Freely falling bodies

Force and Motion, Gravitation

- 1. Center of mass
- 2. Newton's first law, inertia
- 3. Newton's second law (F = ma)
- 4. Newton's third law, forces equal and opposite
- 5. Concept of a field
- 6. Law of gravitation (F = $K_G m_1 m_2/r^2$)
- 7. Uniform circular motion
- 8. Centripetal acceleration ($F=mv^2/r$)
- 9. Weight
- 10. Friction, static and kinetic
- 11. Motion on an inclined plane
- 12. Analysis of pulley systems
- 13. Force

Equilibrium and Momentum

A. EQUILIBRIUM

- 1. Concept of force, units
- 2. Translational equilibrium ($\Sigma F_i = 0$)
- 3. Rotational equilibrium ($\Sigma \tau_I = 0$)
- 4. Analysis of forces acting on an object
- 5. Newton's first law, inertia
- 6. Torques, lever arms
- 7. Weightlessness

B. MOMENTUM

- 1. Momentum = mv
- 2. Impulse = Ft
- 3. Conservation of linear momentum
- 4. Elastic collisions
- 5. Inelastic collisions

Work and Energy

A. WORK

- 1. Derived units, sign conventions
- 2. Amount of work done in gravitational field is path-independent
- 3. Mechanical advantage
- 4. Work-kinetic energy theorem
- 5. Power

B. ENERGY

- 1. Kinetic energy: $KE = 1/2 \text{ mv}^2$; units
- 2. Potential energy
 - a. PE = mgh (gravitational, local)
 - b. $PE = 1/2kx^2$ (spring)
 - c. PE = -GmM/r (gravitational, general)
- 3. Conservation of energy
- 4. Conservative forces
- 5. Power, units

Waves and Periodic Motion

A. PERIODIC MOTION

- 1. Amplitude, period, frequency
- 2. Phase
- 3. Hooke's law, force F = -kx
- 4. Simple harmonic motion; displacement as a sinusoidal function of time
- 5. Motion of a pendulum
- 6. General periodic motion: velocity, amplitude

B. WAVE CHARACTERISTICS

- 1. Transverse and longitudinal waves
- 2. Wavelength, frequency, velocity
- 3. Amplitude, intensity
- 4. Supposition of waves, interference, addition
- 5. Resonance
- 6. Standing waves, nodes
- 7. Beat frequencies
- 8. Refraction and diffraction

Sound

- 1. Production of sound
- 2. Relative speed of sound in solids, liquids and gases
- 3. Intensity of sound, decibel units, log scale
- 4. Attenuation

- 5. Doppler effect: moving sound source or observer, reflection of sound from a moving object
- 6. Pitch
- 7. Resonance in pipes and strings
- 8. Harmonics
- 9. Ultrasound

Fluids and Solids

A. FLUIDS

- 1. Density, specific gravity
- 2. Buoyancy, Archimededs' principle
- 3. Hydrostatic pressure
 - a. Pascal's law
 - b. $P = \rho gh$ (pressure vs. depth)
- 4. Viscosity: Poiseuille flow
- 5. Continuity equation (A·v = constant)
- 6. Concept of turbulence at high velocities
- 7. Surface tension
- 8. Bernoulli's equation

B. SOLIDS

- 1. Density
- 2. Elastic properties (elementary properties)
- 3. Elastic limit
- 4. Thermal expansion coefficient
- 5. Shear
- 6. Compression

Electrostatics and Electromagnetism

A. ELECTROSTATICS

- 1. Charge, conductors, charge conservation
- 2. Insulators
- 3. Coulomb's law: $F = kq_1q_2/r^2$, sign conventions
- 4. Electric field
 - a. field lines
 - b. field due to charge distribution
- 5. Potential difference, absolute potential at point in space
- 6. Equipotential lines
- 7. Electric dipole
 - a. definition of dipole
 - b. behavior in electric field
 - c. potential due to dipole
- 8. Electrostatic induction
- 9. Gauss' law

B. MAGNETISIM

- 1. Definition of the magnetic field **B**
- 2. Existence and direction of force on charge moving in magnetic field

C. LIGHT, ELECTROMAGNETIC RADIATION

- 1. Properties of electromagnetic radiation (General properties only)
 - a. velocity equals constant c, in vacuo
 - b. electromagnetic radiation consists of perpendicularly oscillating electric and magnetic fields; direction of propagation is perpendicular to both
- 2. Classification of electromagnetic spectrum (x-rays)

A. MAGNETISIM

- 1. Orbits of charged particles moving in magnetic field
- 2. General concepts of sources of the magnetic field
- 3. Nature of solenoid, toroid
- 4. Ampere's law for magnetic field induced by current in straight wire and other simple configurations
- 5. Comparison of **E** and **B** relations
 - a. force of **B** on a current
 - b. energy

Electronic Circuit Elements

A. CIRCUIT ELEMENTS

- 1. Current $I = \Delta Q/\Delta t$, sign conventions, units
- 2. Battery, electromotive force, voltage
- 3. Terminal potential, internal resistance of battery
- 4. Resistance
 - a. Ohm's law: I = V/R
 - b. resistors in series
 - c. resistors in parallel
 - d. resistivity (r = R A/t)
- 5. Capacitance
 - a. concept of parallel plate capacitor
 - b. energy of charged capacitor
 - c. capacitors in series
 - d. capacitors in parallel
 - e. ddielectric
- 6. Discharge of a capacitor through a resistor

B. CIRCUITS

Power in circuits: P = VI, $P = I^2R$

C. ALTERNATING CURRENTS AND REACTIVE CIRCUITS

- 1. Root-mean-square current
- 2. Root-mean-square voltage

Light and Geometrical Optics

A. LIGHT, ELECTROMAGNETIC RADIATION

- 1. Concept of interference; Young double slit experiment
- 2. Thin films, diffraction grating, single slit diffraction
- 3. Other diffraction phenomena, x-ray diffraction
- 4. Polarization of light
- 5. Visual spectrum, color
 - a. energy
 - b. lasers

B. GEOMETRICAL OPTICS

- 1. Reflection from plane surface: angle of incidence equals angle of reflection
- 2. Refraction, refractive index n; Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- 3. Dispersion, change of index of refraction with wavelength
- 4. Conditions for total internal reflection
- 5. Spherical mirrors
 - a. center of curvature
 - b. focal length
 - c. real and virtual images
- 6. Thin lenses
 - a. converging and diverging lenses
 - b. use of formula 1/p + 1/q = 1/f, with sign conventions
 - c. lens strength, diopters
- 7. Combination of lenses
- 8. Lens aberration
- 9. Ray tracing
- 10. Optical instruments]

Atomic and Nuclear Structure

- I. PHYSICS
 - A. Atomic Structure and Spectra
 - 1. Emission spectrum of hydrogen (Bohr model)
 - 2. Atomic energy levels
 - a. quantized energy levels for electrons
 - b. calculation of energy emitted or absorbed when an electron changes energy levels
 - B. Atomic Nucleus
 - 1. Atomic number, atomic weight
 - 2. Neutrons, protons, isotopes
 - 3. Nuclear forces
 - 4. Radioactive decay: α , β , γ , half-life, exponential decay, semi-log plots
 - 5. General nature of fission
 - 6. General nature of fusion
 - 7. Mass deficit, energy liberated

II. CHEMISTRY

Atomic and Nuclear Structure

- 1. Nuclear particles
- 2. Atomic number, atomic weight
- 3. Isotopes
- 4. Binding energy
- 5. Nuclear decay
 - a. α , β and γ decay
 - b. stability, half-life

Basic Concepts and General Techniques

A. UNITS AND DIMENSIONS

- 1. Metric units:
 - a. conversions within metric system
 - b. conversion from metric to English units
 - c. conversion within English system
- 2. Dimensional balance, checking equations for dimensional correctness
- 3. Significant figures
- 4. Numerical estimation

B. BASIC CONCEPTS

- 1. Mass, length, time
- 2. Role of experiment and measurement

C. GRAPHING TECHNIQUES

- 1. Cartesian co-ordinate system
- 2. Use of semi-log graph paper
- 3. Use of log-log graph paper

D. ERROR ANALYSIS

- 1. Random vs. systematic errors
- 2. Propagation of errors
- 3. Mean and standard deviation
- 4. Chi
- 5. Student *t*