Neutrino Oscillations: An Overview

David C. Latimer
Department of Physics and Astronomy VANDERBILT \bar{z} UNIVERSITY
NP Seminar
29 Nov 04

Collaborators: David J. Ernst, Jesus Escamilla, Rachel Wooten, Jong Son

The standard model

Oscillations (i)

- Mixing matrix relating mass eigenstates and flavor states results in oscillation

Standard parameterization (3-v):

$$
\begin{aligned}
& U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right) \\
& \text { where } \quad s_{j k}=\sin \left(\theta_{j k}\right), c_{j k}=\cos \left(\theta_{j k}\right) .
\end{aligned}
$$

Oscillations (ii)

- Using quantum theory, we may determine the (ultra-relativistic) oscillation probability for v of energy E and source-detector distance L.

$$
P_{\alpha \rightarrow \beta}(L / E)=\operatorname{tr}\left[e^{i M L / 2 E} P^{\alpha} e^{-i M L / 2 E} P^{\beta}\right]
$$

where $\quad M=\operatorname{diag}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)$
and $\quad\left(P^{\alpha}{ }_{j k}=U_{\alpha, j}^{*} U_{\alpha k}\right.$.

Oscillations (iii)

- Or in more familiar terms...

$$
\begin{aligned}
& \left.P_{\alpha \rightarrow \beta}(L / E)=\delta_{\alpha \beta}-4 \sum_{j<k}^{3} \mathfrak{R} \mid U_{\alpha j} U_{\alpha k}^{*} U_{\beta k} U_{\beta j}^{*}\right) \sin ^{2}\left(\phi_{j k}\right) \\
& \quad+2 \sum_{j<k}^{3} \mathfrak{J}\left|U_{\alpha j} U_{\alpha k}^{*} U_{\beta k} U_{\beta j}^{*}\right| \sin \left(2 \phi_{j k}\right)
\end{aligned} \quad \begin{aligned}
& \text { where } \quad \phi_{j k}=\Delta_{j k} L / 4 E \\
& \text { and } \quad \Delta_{j k}=m_{j}^{2}-m_{k}^{2} .
\end{aligned}
$$

Present parameter values

$$
\begin{array}{ll}
\theta_{12}=0.57 \pm 0.06 & \Delta_{21}=\left|7.1_{-1.1}^{+1.8}\right| \times 10^{-5} \mathrm{eV}^{2} \\
0 \leq \theta_{13} \leq 0.23 & \Delta_{31}= \pm\left|2.0_{-0.8}^{+1.2}\right| \times 10^{-3} \mathrm{eV}^{2} \\
\theta_{23}=0.78 \pm 0.17 & \delta=? ?
\end{array}
$$

Experimental overview

- Solar (e.g., Homestake, SAGE, Kamiokande, SNO)
- Atmospheric (e.g., Super-K)
- Reactor (e.g., CHOOZ, KamLAND)
- Accelerator beam-stop (e.g., LSND, K2K)

Solar neutrinos

$L \sim 10^{11} \mathrm{~m}$

E and the expected ν_{e} flux can be got from the SSM

$$
L / E \sim 10^{10} \mathrm{~m} / \mathrm{MeV}
$$

Solar neutrino deficit (i)

Experiment

- SAGE
- GALLEX
- GNO
- Homestake
- Kamiokande
- Super-K

Data/Theory
0.54 ± 0.05
0.61 ± 0.06
0.51 ± 0.08
0.34 ± 0.03
0.55 ± 0.08
0.465 ± 0.005

Reaction

$$
\nu_{e}+{ }^{71} \mathrm{Ga} \rightarrow{ }^{71} \mathrm{Ge}+e^{-}
$$

$$
v_{e}+{ }^{37} \mathrm{Cl} \rightarrow{ }^{37} \mathrm{Ar}+e^{-}
$$

$$
v+e^{-} \rightarrow v+e^{-}
$$

Note: SK is sensitive mostly to v_{e} - but also to $\nu_{\mu \tau}$ (down by factor 7)

SNO results

- Elastic scattering $R=0.47 \pm 0.05$
- Charged current $R=0.35 \pm 0.02$
- Neutral current $R=1.01 \pm 0.13$

$v_{\mathrm{e}} \quad$ flux $=1.76 \pm 0.05 \pm 0.09$
$v_{\mu \tau} \quad$ flux $=3.41 \pm 0.45 \pm 0.46$
SSM flux $=5.05+1.01-0.81$

Atmospheric neutrinos

Incident cosmic rays produce $\pi^{ \pm}$which decay

$$
\pi^{ \pm} \rightarrow \mu^{ \pm}+v_{\mu}\left(\bar{v}_{\mu}\right) \quad \mu^{ \pm} \rightarrow e^{ \pm}+v_{e}\left(\bar{v}_{e}\right)+\bar{v}_{\mu}\left(v_{\mu}\right)
$$

At Super-K:

$$
L \sim 10^{3}-10^{7} \mathrm{~m} \quad E \sim 10^{3} \mathrm{MeV}
$$

$$
L / E \sim 10^{0}-10^{4} \mathrm{~m} / \mathrm{MeV}
$$

Super-K results

The measured/expected ratio for μ events shows dependence on L / E

Reactor neutrinos

Measure \bar{v}_{e} oscillation probability for $E \sim 3 \mathrm{MeV}$ at a fixed L

CHOOZ ($L \sim 10^{3} \mathrm{~m}$) saw no deficit
KamLAND $\left(\langle L\rangle \sim 10^{5} \mathrm{~m}\right)$ does!

KamLAND results

Measured / expected $=0.658 \pm 0.044 \pm 0.047$

Beam-stop neutrinos

$\mathrm{K} 2 \mathrm{~K}=\mathrm{KEK}$ to Super-K

Measure $\nu_{\mu}\left(E \sim 10^{3} \mathrm{MeV}\right)$ with a long baseline $L \sim 10^{5} \mathrm{~m}$.

Measured / expected $=0.55 \pm 0.19$

Our analysis

- Construct a model of the experiments assuming CP is conserved
- Explore the acceptable region for θ_{13}

NB: We bound the mixing angles as below

$$
\theta_{12} \in[0, \pi / 2], \quad \theta_{13} \in[-\pi / 2, \pi / 2], \quad \theta_{23} \in[0, \pi / 2] .
$$

Allowed region

Δx^{2} vs. θ_{13}

Comments

- Within our model, we find that θ_{13} lies between -0.17 and 0.24 at the level of $1-\sigma$.
- In a perturbative expansion about θ_{13} and the ratio $\Delta_{21} / \Delta_{31}$, terms linear in θ_{13} are suppressed by the mass ratio ~ 0.03.
- Is there a region in which this suppression can be overcome so that the positive and negative regions for θ_{13} might be experimentally distinguished?

Best guess

- Consider a region where the Δ_{31} oscillations are incoherent [i.e., $\left\langle\sin ^{2} \phi_{31}\right\rangle=1 / 2$], but the Δ_{21} oscillations are coherent.
- Examine $P_{e \mu}, P_{\mu \mu}, P_{\mu \tau}$ oscillation channels.
- The sign of the mixing angle has greatest impact whenever $\sin ^{2} \phi_{21}$ is maximal; i.e., look in the region:

$$
L / E \sim 1.6 \times 10^{4} \mathrm{~m} / \mathrm{MeV}
$$

Size of the effect

Using the $1-\sigma$ bounds: $\theta_{13}^{+}=0.24, \theta_{13}^{-}=-0.17$.

$$
\frac{P_{\mu \mu}\left(\theta_{13}^{+}\right)-P_{\mu \mu}\left(\theta_{13}^{-}\right)}{P_{\mu \mu}\left(\theta_{13}^{+}\right)+P_{\mu \mu}\left(\theta_{13}^{-}\right)}=-0.25, \quad \frac{P_{e \mu}\left(\theta_{13}^{+}\right)-P_{e \mu}\left(\theta_{13}^{-}\right)}{P_{e \mu}\left(\theta_{13}^{+}\right)+P_{e \mu}\left(\theta_{13}^{-}\right)}=0.18 .
$$

The $P_{\mu \tau}$ channel exhibits little dependence on the sign of θ_{13}, as θ_{23} is nearly maximal.

Plot of $P_{\mu \mu}$ in this region

Plot of $P_{e \mu}$ in this region

Plot of $P_{e e}$ in this region

Caveat

- The mixing angles θ_{13} and θ_{23} are correlated.
- Future work: Examine this correlation and its implications....

