
Genetic Programming and HEP
Vanderbilt Department of Physics and Astronomy

Nuclear and Particle Physics Seminar

1 November 2004

Eric W. Vaandering
ewv@fnal.gov

Vanderbilt University

and

FOCUS Collaboration

Eric Vaandering – Genetic Programming and HEP – p.1/62

Overview
• Machine learning techniques
• Introduction to Genetic Programming

• Populations and Generations
• Mutation and Crossover
• Fitness and Natural Selection

• Genetic Programming applied to doubly Cabibbo
suppressed decays
• D+ → K+π+π−

• Λ+
c → pK+π−

Eric Vaandering – Genetic Programming and HEP – p.2/62

Genesis
I first learned of this technique from our VAMPIRE colleauges in
the VU Medical Center.

They work in the Human Genetics program and use this
technique to study gene expression levels to predict which type
of breast cancer a person is susceptable to (among other things).

The fact that their technique is called Genetic Programming and
that they are Geneticists is completely unrelated, a pure
coincidence.

But, I thought maybe I could apply this technique to high energy
physics.

Eric Vaandering – Genetic Programming and HEP – p.3/62

Machine Learning
There has been a long interest in teaching machines to
“automatically” solve problems, given the broad parameters of
the possible solutions.

For all but the simplest problems, exhaustive or completely
random searches are impractical. There are numerous attempts to
automatically find solutions: neural nets, simulated annealing,
expert systems, etc.

To find the best solution, maybe we should take a clue from
biology and the evolutionary process. (→ Genetic Algorithms)

Since we will use computer programs to implement our
solutions, maybe the form of our solution should be a computer
program.

Combined, these last two points form the basis of
Genetic Programming

Eric Vaandering – Genetic Programming and HEP – p.4/62

Genetic Programming
“How can computers learn to solve problems without being
explicitly programmed? In other words, how can computers be
made to do what is needed to be done, without being told exactly
how to do it?”

— Attributed to Arthur Samuel, 1959
(Pioneer of Artificial Intelligence,
coined term “machine learning”)

“Genetic programming is automatic programming. For the first
time since the idea of automatic programming was first discussed
in the late 40’s and early 50’s, we have a set of non-trivial,
non-tailored, computer-generated programs that satisfy Samuel’s
exhortation: ‘Tell the computer what to do, not how to do it.’ ”

— John Holland, University of Michigan, 1997
(Pioneer of Genetic Algorithms)

Eric Vaandering – Genetic Programming and HEP – p.5/62

Genetic Programming
Definition:

Genetic Programming is a probabilistic search algorithm that
iteratively transforms a set (population) of programs, each with
an associated fitness value, into a new population of offspring
programs using the Darwinian principle of natural selection and
operations that mimic naturally occurring genetic operations,
such as sexual recombination (crossover) and mutation.

• Applies a model of biological evolution to program
“discovery”

• Pioneered by John Koza in 1989
• Seminal reference: Genetic Programming: On the

Programming of Computers by Natural Selection (Koza,
1992)

• Since 1992, more than 3,000 papers applied to a wide range
of problems

Eric Vaandering – Genetic Programming and HEP – p.6/62

Programming Assumptions
Normally when we program, we assume a number of guidelines:

• Correctness: The solution works perfectly
• Consistency: The problem has one preferred solution
• Justifiability: It is apparent why the solution works
• Certainty: A solution exists
• Orderliness: The solution proceeds in a orderly way
• Brevity: Every part of the solution is necessary, a shorter

solution is better (Occam’s Razor)
• Decisiveness: We know when the solution is complete

Genetic Programming requires that all of
these assumptions be discarded

Eric Vaandering – Genetic Programming and HEP – p.7/62

GP principles
In fact, in Genetic Programming:

• Correctness: A solution may be “good enough”
• Consistency: Many very different solutions may be found
• Justifiability: It may be very unclear how or why a solution

works
• Certainty: A perfect solution may never be found
• Orderliness: A solution may be very disorganized
• Brevity: Large parts of the solution may do nothing
• Decisiveness: We may never know if the best solution has

been found

Eric Vaandering – Genetic Programming and HEP – p.8/62

Populations and Generations
Genetic Programming works by transforming one group of
individuals (programs) in generation n into another group of
individuals in generation n + 1. There are typically a few
hundred to a few thousand programs per generation.

Typically the number of individuals in each generation is the
same. Usually no duplication is allowed in the 1st (or 0th)
generation. Duplication is allowed in later generations.
(Diversity decreases.)

There are GP implementations where change is not generational,
but adiabatic. In these implementations, when a new individual
is created, an old one is usually “killed,” keeping the population
size the same.

Eric Vaandering – Genetic Programming and HEP – p.9/62

Gene Cross-over and Mutation
Biological

(DNA)
Cross-over

Mutations in nature change the genetic code for a small region of
DNA. Usually are harmful or neutral; occasionally helpful
(creates a better/different protein).

Mutations can restore lost (or never present) diversity.

These two processes, combined with natural selection,
drive biological evolution.

Eric Vaandering – Genetic Programming and HEP – p.10/62

Preparatory Steps
To prepare to solve a problem with Genetic Programming, two
steps are necessary:

• Define a series of functions
• Some functions may return a variable or input
• Other functions may perform an operation

• +, −, >, < are all “functions”
• So are IF-THEN-ELSE and DO (FOR) constructs

• Define the fitness of the program. Examples:
• How many events does it classify correctly?
• In how many cases does it provide the correct output?
• How well does it fit the data?

Eric Vaandering – Genetic Programming and HEP – p.11/62

Tree Representation
Genetic Programming fundamentals are easier to illustrate if we
adopt a “Tree” representation of a program. An example of this
representation:

C code: Program tree

float myfunc(float x, float y) {
float val;
if (x > y) {

val = x*x + y;
} else {

val = y*y + x;
}
return val;

}

IF

>

x y

+

×

x x

y

+

×

y y

x

Eric Vaandering – Genetic Programming and HEP – p.12/62

Tree Representation, cont.
From a fraction of our tree, we can see a few things:

+

×

x x

y

Two kinds of “nodes”
• There are functions (IF, >, +, ∗)
• There are “terminals” (x, y)
• A function can have any number of

arguments (IF has three, sinx has
one)

If we allow any function or terminal at any position, then all
operations must be allowed:

• IF (float)
• x + (y > x)

• Divide by zero (if we use division)

Eric Vaandering – Genetic Programming and HEP – p.13/62

Genetic Programming Process

Create Initial
Population

Evaluate Fitness
of Individuals

Full?
Population

Is

Criteria
Reached?

End

Select
Operation

End
Run

Population
Insert into

Start New
Population

Yes

No

Yes

No

Crossover (90%)

Copy (10%)

Mutate (1%)

Eric Vaandering – Genetic Programming and HEP – p.14/62

Building a tree
Trees are randomly built up one node at a time.

IF Root node ‘IF’ has 3 args.

Eric Vaandering – Genetic Programming and HEP – p.15/62

Building a tree
Trees are randomly built up one node at a time.

IF

>

Root node ‘IF’ has 3 args.
‘>’ chosen for 1st arg.

Eric Vaandering – Genetic Programming and HEP – p.16/62

Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

Root node ‘IF’ has 3 args.
‘>’ chosen for 1st arg.
x and y terminate ‘>’

Eric Vaandering – Genetic Programming and HEP – p.17/62

Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

+

*

x x

y

+

*

y y

x

Root node ‘IF’ has 3 args.
‘>’ chosen for 1st arg.
x and y terminate ‘>’
Remaining branches grown
Tree is complete
(all branches terminated)

Eric Vaandering – Genetic Programming and HEP – p.18/62

Crossover (Recombination)
Two programs and crossover points within them are chosen.
Sub-trees are removed and swapped between trees, giving two
new “children”

−

+

x 1

y

+

1 ×

x x

→

−

x y

+

1 ×

+

x 1

x

We hope to combine the best aspects of both parents into one
child (of course, we are just as likely to end up with the worst
aspects in one child).

Eric Vaandering – Genetic Programming and HEP – p.19/62

Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

y y

Pick a parent & mutation point

Eric Vaandering – Genetic Programming and HEP – p.20/62

Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

Pick a parent & mutation point
Remove the subtree

Eric Vaandering – Genetic Programming and HEP – p.21/62

Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

x +

y x

Pick a parent & mutation point
Remove the subtree
Finish the new subtree as if it
were a “root” tree

Mutation can often be very destructive in Genetic Programming
Remember, both crossover and mutation are random processes.

Eric Vaandering – Genetic Programming and HEP – p.22/62

Practical considerations
Obviously, a tree can grow nearly infinite in size. This is usually
undesirable. There are ways to control this:

• Set limits on number of nodes
• Set limits on depth of nodes
• Create initial topologies of specified depth

A common approach is to allow half of the initial population to
grow completely randomly and to create the other half at a range
of (shallow) depths. In the latter case, pick functions for all
nodes less than desired depth, pick terminals for all nodes at
desired depth.

So far we’ve mimiced how organisms reproduce.
The other half of the problem is why they reproduce.

Eric Vaandering – Genetic Programming and HEP – p.23/62

Survival of the Fittest
In nature, we know that the more fit an organism is for it’s
environment, the more likely it is to reproduce. This is one of the
basic tenets of evolutionary theory.

• Organisms with serious deformities are still-born or die at a
young age

• Faster, stronger, or longer lived organisms will produce
more offspring

The Genetic Programming method mimics this by determining a
fitness for each individual. Which individuals reproduce is based
on that fitness.

• The better the fitness, the better the solution
• The problem must allow for inexact solutions. There may

be a single correct solution, but there must be a way to
distinguish between increasingly incorrect solutions.
(Otherwise we are engaging in a random search.)

Eric Vaandering – Genetic Programming and HEP – p.24/62

Reproduction Probabilities
To select which individuals are chosen to help populate the next
generation, they are randomly chosen according to their fitness.
The standard method is called “fitness proportionate,” sort of a
roulette wheel where the size of the slot is proportional to the
fitness.

Good Fitness

Bad Fitness

• The best individual is most likely to be chosen
• The worst individual may be chosen
• The best individual is not guaranteed to be chosen

Eric Vaandering – Genetic Programming and HEP – p.25/62

Tournament Selection
Another type of selection is also used to implement survival of
the fittest. In tournament selection, a number of individuals (two
or more) are selected randomly. The most fit from that group is
selected to reproduce. The process is repeated to find a mating
partner (if needed).

We see this behavior in nature too...

Tournament Reward

Eric Vaandering – Genetic Programming and HEP – p.26/62

Running the GP
Putting it all together, we are ready to “run” the GP (find a
solution).

• User has defined functions and definition of fitness
• Generate a population of programs (few hundred to few

thousand) to be tested
• Test each program against fitness definition
• Choose genetic operation (crossover/mutation) and

individuals to create next generation
• Chosen randomly according to fitness

• Repeat process for next generation
• Often tens of generations are needed to find the best

solution
• At the end, we’ll have a large number of solutions; we’ll

look at the best few

Eric Vaandering – Genetic Programming and HEP – p.27/62

Parallelizing the GP
Each test takes a while (10–60 sec on a 2 GHz P4) so spread over
multiple computers

• Adopt a South Pacific island type model
• A population on each island (CPU)
• Every few generations, migrate the best individuals

from each island to each other island
• Lots of parameters to be tweaked, like size of programs,

probabilities of reproduction methods, exchanges, etc.
• None of them seem to matter all that much, process is

quite robust

Eric Vaandering – Genetic Programming and HEP – p.28/62

Parallelizing the GP

Eric Vaandering – Genetic Programming and HEP – p.29/62

Application to HEP
Ok, so all this is interesting to computer scientists, but how does
it apply to physics, specifically HEP?

In FOCUS, we typically select interesting (signal, we hope)
events from background processes using cuts on interesting
variables. That is, we construct variables we think are
interesting, and then require that an event pass the AND of a set
of selection criteria.

Instead, what if we give a Genetic Programming framework the
variables we think are interesting, and allow it to construct a
filter for the events?

• If an AND of cuts is the best solution, the GP can find that

We already have some experience with these types of methods.
E.g., neural networks are used effectively for B flavor tagging by
several experiments.

Eric Vaandering – Genetic Programming and HEP – p.30/62

What’s it good for?
• Might replace or supplement cuts
• Allow us to include indicators of interesting decays in the

selection process
• These indicators can include variables we can’t cut on

(too low efficiency)
• Can form correlations we might not think of

• Has already had this benefit
• Hope to produce a more effecient selection mechanism

Eric Vaandering – Genetic Programming and HEP – p.31/62

An Easy Problem

Fi
tn

es
s

Model

Eric Vaandering – Genetic Programming and HEP – p.32/62

A Difficult Problem

Fi
tn

es
s

Model
Eric Vaandering – Genetic Programming and HEP – p.33/62

Questions
When considering an approach like this, some questions
naturally arise:

• What about units? Can you add a momentum and a mass?
• All numbers are defined to be unit-less

• Is it evolving or randomly hitting on good combinations?
• The tree can grow large with useless information.
• How do we know it’s not biased?
• Does it do as well as normal cut methods do?

Eric Vaandering – Genetic Programming and HEP – p.34/62

FOCUS Spectrometer

Outer Muon
R.P.C.'s

Beam
Direction

P.W.C.'s

Outer
Electromagnetic

Calorimeter

Cerenkov
Counters

Trigger
Hodoscope

P.W.C.

P.W.C.

Cerenkov
Counter

Magnet

Target Region

Magnet

Silicon Microstrips

Trigger CountersTargets
Inner

Electromagnetic
Calorimeter

Hadron
Calorimeter

Trigger
Hodoscope

Muon
Hodoscope

Muon Filter
Beam

Calorimeter
Straw
Tubes

Target
Silicon

Spectrometer
Beam

Direction

F0cusF0cus
E831E831E831

Highlights:
• Segmented target
• Silicon vertexing
• MWPC tracking

• Threshold Čerenkov
• EM/hadronic calorimeters
• Muon detectors

Eric Vaandering – Genetic Programming and HEP – p.35/62

Target and Vertexing

π

L

Λ

-

c
+

+

π

π

π

γ

Vertex

Secondary
Vertex

Primary Κ

p

Some details of the FOCUS candidate driven vertexing
• L: Distance between production and decay vertices. `/σ`,

significance of separation
• CLS, CLP: CLs of decay and production vertices
• Iso1: CL that tracks from decay vertex are consistent with

production vertex
• Iso2: CL that other tracks (incl. from production vertex) are

consistent with decay vertex
• OoT: Significance of decay being out of target material

Eric Vaandering – Genetic Programming and HEP – p.36/62

Variables and Operators
Give the GP lots of things to try:

Functions (22) Variables (D+–35, Λ+
c –37)

× sign ` ∆W (πp)

/ negate σ` ∆W (Kp)

+ max `/σ` ∆W (πK) σt

− min OoT πcon pT

xy NOT CLS Track χ2’s Σp2
T

√ AND CLP OS Vertex CL merr

log OR Iso1 OS ∆W (πK) µmax

> XOR Iso2 OS CLµ TS/NoTS

< IF #life Real (−2, +2) REME

<=> sin Pri. OoT Int (−10, +10)

f(n) cos p(Λ+
c) 0,1

E.g.: 80 nodes (40 func., 40 var.) → 4022 × 4037 = 3.3 × 1094

combinations.
Just one topology of many (as big as 340).

Eric Vaandering – Genetic Programming and HEP – p.37/62

An Example Tree
Let’s look at a very simple tree. This one gives 1 when the
momentum (p) divided by the time resolution (σt) is greater than
5, gives 0 otherwise. (This is just a cut.)

>

/

p σt

5

This filter is then applied to each event in my sample and the
fitness is determined from the selected events. (The 1s.)

Eric Vaandering – Genetic Programming and HEP – p.38/62

Cabibbo Suppressed Decays
Doubly Cabibbo suppressed decays can only be observed in
charm. Both W vertices are Cabibbo suppressed.

q

c

q

s

d̄

u

q

c

q

d

s̄

u

Cabibbo Favored Doubly Cabibbo Suppressed

Doubly Cabibbo suppressed decays are chosen for this
application since the final state particles are often identical (e.g.,
D+ → K−π+π+ vs. D+ → K+π+π−). This eliminates many
possible sources of systematics arising from inexact modeling of
what the GP is doing.

Expected relative branching ratios: ∼ tan4 θc ≈ 0.25%.
Eric Vaandering – Genetic Programming and HEP – p.39/62

D+ → K+π+π−

We first want to check this method on a known doubly Cabibbo
suppressed decay. The first such decay discovered,
D+ → K+π+π− has been known for many years now and it’s
branching ratio, relative to D + → K−π+π+, is reasonably well
known. This branching ratio is surprisingly large (about
3 tan4 θc). The PDG value is 0.75 ± 0.16% relative to
D+ → K−π+π+.

Using the same data I do, a recently published FOCUS
branching ratio measurement and Dalitz analysis finds about 200
events in this mode and measures the relative branching ratio as
0.65 ± 0.08 ± 0.04%

Can a GP analysis reproduce the known branching ratio? Can it
improve upon the errors of a “traditional” analysis?

Eric Vaandering – Genetic Programming and HEP – p.40/62

After skim (pre-GP) signals

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

10000

20000

30000

40000

50000

60000

Skim criteria

 658±Yield = 253184

Skim criteria

Fit shows D+ → K−π+π+ normalizing mode
“Linear” histogram is DCS candidates

Eric Vaandering – Genetic Programming and HEP – p.41/62

Evaluating the GP
For each program the GP framework suggests, we have to tell the
framework how good the program is:

• All functions must be well defined for all input values, so
> → 1 (true) or 0 (false), log of neg. number, etc.

• Evaluate the tree for each event → a single value
• Select events for which Value of tree > 0

• Initial sample has as loose cuts as possible
• Return a fitness to framework
• Could be ∝

√
S + B/S (framework wants to minimize)

• In this case S is from CF mode scaled down to
expected/measured DCS level. B is from fit to DCS BG
(masking out signal region if appropriate).

Eric Vaandering – Genetic Programming and HEP – p.42/62

Evolutionary Trajectory

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40
Generation

Fi
tn

es
s

0

10

20

30

40

50

60

70
0 5 10 15 20 25 30 35 40

Circles: average, Stars: best, Line: avg. size

Eric Vaandering – Genetic Programming and HEP – p.43/62

Expansion of best trees

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0 5 10 15 20 25 30 35 40

Stars are the best tree, still evolving at generation 40

Eric Vaandering – Genetic Programming and HEP – p.44/62

CF and DCSD signals

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

2000

4000

6000

8000

10000

12000

Selected CF & DCS

 255±Yield = 62441

Selected CF & DCS

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

120

140

160

180

Selected DCS

 36±Yield = 466

Selected DCS

• Retains 62K of 253K original CF events
• DCS background reduced a factor > 150

• DCS mass and width are fixed to CF values

Eric Vaandering – Genetic Programming and HEP – p.45/62

Best tree (40 generations)
min

AND

×

×

<

<=>

ln

#τ

/

p σt

×

XOR

#τ POT

+

XOR

#τ Iso2

min

OoT πcon2

NOT

POT

+

σM ×

Iso1 POT

OoT

AND

NOT

Iso2

ln

−

ln

∆πK 1

OSCL

Four branches, each
must be positive

Must be true

Eric Vaandering – Genetic Programming and HEP – p.46/62

Comparison with Cut Method
How does this compare with our normal method?

• From PLB 601 10–19, measured BR of D+ → K+π+π−

• Rel. BR — PLB: 0.65 ± 0.08 ± 0.04, GP: 0.76 ± 0.06

• Not a perfect comparison, not optimized on S/
√

S + B

invariant mass K+ π- π+

0

20

40

60

80

100

120

140

160

180

1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1
GeV/c2

ev
en

ts
/1

0
M

eV

D+
s shown on right

• Similar signal to noise
• Cuts: Yield = 189 ± 24 events
• GP: Yield = 466 ± 36 events

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

120

140

160

180

Selected DCS

 36±Yield = 466

Selected DCS

Eric Vaandering – Genetic Programming and HEP – p.47/62

What about bias?
Try to reduce by putting in a penalty (0.5%) for each node (make
sure added nodes are valuable).
Then, to test for bias, optimize on only half the events (left).

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

1000

2000

3000

4000

5000

6000

CF Optimized

 180±Yield = 31249

CF Optimized

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

1000

2000

3000

4000

5000

6000

CF Unoptimized

 180±Yield = 31203

CF Unoptimized

31250 ± 180 events 31200 ± 180 events

No evidence of selection induced bias here.

Eric Vaandering – Genetic Programming and HEP – p.48/62

Bias, continued
Look at the same plots for doubly Cabibbo suppressed events.

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

10

20

30

40

50

60

70

80

90

DCS Optimized

 26±Yield = 266 Entries = 2135

DCS Optimized

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

10

20

30

40

50

60

70

80

90

DCS Unoptimized

 25±Yield = 211 Entries = 2123

DCS Unoptimized

Doubly Cabibbo suppressed distributions are also similar: 2135
(optimized) vs. 2123 (unoptimized) events in whole plot.
(Remember optimization is blind to signal region, so differences
there not due to GP.)

Eric Vaandering – Genetic Programming and HEP – p.49/62

Tuning GP parameters
Start: 20 CPUs, 1000 trees/CPU, 6 gen. Doubled each parameter

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12
Generation

Fi
tn

es
s

20x1000x6 20x2000x6
40x1000x6 20x1000x12

• Cleaner starting sample for these studies
• Points are average, dotted line is best
• More generations is only clear improvement
• Plots in analysis section use 20x1500x40

Eric Vaandering – Genetic Programming and HEP – p.50/62

Data MC comparisons
Since the two decays are nearly identical, what is important is
that the efficiency of the tree for CF and DCS modes is the same.
What need not be known is the absolute efficiency on a single
mode. But, we can study this with Monte Carlo.

For the 40th generation program, the MC efficiencies are:

CF Eff. (%) DCS Eff. (%)
Skim cuts 5.76 ± 0.01 5.57 ± 0.01

GP Selection 1.43 ± 0.01 1.41 ± 0.01

GP/Skim 24.91 ± 0.12 25.29 ± 0.12

But, we can look at GP/Skim for the CF mode in the data.

We find 24.66 ± 0.08% (vs. 24.91 ± 0.12%).

So, not only do the GP efficiencies for MC agree, the one place
we can compare the GP on MC and data, it also comes out very
close.

Eric Vaandering – Genetic Programming and HEP – p.51/62

Data MC comparisons
Since the two decays are nearly identical, what is important is
that the efficiency of the tree for CF and DCS modes is the same.
What need not be known is the absolute efficiency on a single
mode. But, we can study this with Monte Carlo.

For the 40th generation program, the MC efficiencies are:

CF Eff. (%) DCS Eff. (%)
Skim cuts 5.76 ± 0.01 5.57 ± 0.01

GP Selection 1.43 ± 0.01 1.41 ± 0.01

GP/Skim 24.91 ± 0.12 25.29 ± 0.12

But, we can look at GP/Skim for the CF mode in the data.
We find 24.66 ± 0.08% (vs. 24.91 ± 0.12%).

So, not only do the GP efficiencies for MC agree, the one place
we can compare the GP on MC and data, it also comes out very
close.

Eric Vaandering – Genetic Programming and HEP – p.51/62

Λ+
c → pK+π−

The next decay we consider is Λ+
c → pK+π−. There are no

observations or limits. Even an observation of tan4 θc relative to
Λ+

c → pK−π+ is challenging for FOCUS, but there is a
complication.

The Cabibbo favored mode has an W -exchange contribution
while the DCS decay does not. (This contribution is also why the
Λ+

c lifetime is about one half the Ξ+
c (csu) lifetime.)

u

d

c

u

u

q

q

s

So, the expected branching ratio will be reduced.
Eric Vaandering – Genetic Programming and HEP – p.52/62

After skim (pre-GP) signals
 / ndf 2χ 73.7 / 55

Prob 0.04694
p0 322.3± 4.185e+04
p1 142.8± -1.45e+04
p2 350.8± 2.131e+04

p3 0.0001317± 2.289
p4 0.0001527± 0.007753

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

2000

4000

6000

8000

10000

12000

14000

 / ndf 2χ 73.7 / 55
Prob 0.04694
p0 322.3± 4.185e+04
p1 142.8± -1.45e+04
p2 350.8± 2.131e+04

p3 0.0001317± 2.289
p4 0.0001527± 0.007753

Original CF & DCS

Lower histogram is DCS candidates
Eric Vaandering – Genetic Programming and HEP – p.53/62

Λ+
c Evolutionary Trajectory

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40
Generation

Fi
tn

es
s

0

20

40

60

80

100
0 5 10 15 20 25 30 35 40

Circles: average, Stars: best, Line: avg. size

Eric Vaandering – Genetic Programming and HEP – p.54/62

Expansion of best trees

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0 5 10 15 20 25 30 35 40

Stars are the best tree, still evolving at generation 40

Eric Vaandering – Genetic Programming and HEP – p.55/62

Λ+
c → pK−π+ (CF) signal

 / ndf 2χ 162.5 / 55
Prob 1.662e-14
p0 22.61± -261.7
p1 10.19± 138.6
p2 60.61± 3034
p3 0.0001614± 2.289
p4 0.0001596± 0.007676

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

100

200

300

400

500

600

700

800

900
 / ndf 2χ 162.5 / 55

Prob 1.662e-14
p0 22.61± -261.7
p1 10.19± 138.6
p2 60.61± 3034
p3 0.0001614± 2.289
p4 0.0001596± 0.007676

Cabibbo Favored

Retains 3,000 of 21,300 original events, lower is DCS
Eric Vaandering – Genetic Programming and HEP – p.56/62

Λ+
c → pK+π− (DCS) signal

 / ndf 2χ 73.07 / 57
Prob 0.07432
p0 6.417± -9.228
p1 2.865± 7.375
p2 7.137± 1.093
p3 0± 2.289
p4 0± 0.007676

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

2

4

6

8

10

12

14

 / ndf 2χ 73.07 / 57
Prob 0.07432
p0 6.417± -9.228
p1 2.865± 7.375
p2 7.137± 1.093
p3 0± 2.289
p4 0± 0.007676

DCS

Mass and width are fixed to CF values
Eric Vaandering – Genetic Programming and HEP – p.57/62

Best tree (40 generations)
×

+

Σp2
T Cls

IF

>

p σt

+

−

f(n)

OSµ

`

<=>

`/σ` 8.0

min

IF

sin

IF

xy

min

min

Tree2 <=>

Cls χ2
π

Cls

σt

IF

Iso1 <=>

xy

−

Σp2
T Iso1

σt

Iso2

Σp2
T

xy

min

min

×

Σp2
T Clp

−

Σp2
T

πe

−

min

Clp −

Σp2
T

πe

Iso1

σt

Eric Vaandering – Genetic Programming and HEP – p.58/62

Comparison with Cut Method
How does this compare with our normal method?

• I’ve looked for Λ+
c → pK+π− before by maximizing

S/
√

S + B with manual “hill-climbing.”

Λc, standard cuts

0

100

200

300

400

500

600

700

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45

Yield = 1450±50

Λc pK+π-

0

2

4

6

8

10

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45

Yield = 5.2± 4.8

• Important quantity: σYDCS/YCF

• Cuts: σY = 4.8, Yield = 1450

• GP: σY = 7.1, Yield = 3030

• σY/Y for GP = 2.3 × 10−3

• σY/Y for cuts = 3.3 × 10−3

• GP method is ∼ 50% better,
but still need luck or significant
improvements to observe Λ+

c →
pK+π−

Eric Vaandering – Genetic Programming and HEP – p.59/62

Conclusions
This method shows promise, but there are some caveats

• May be more challenging for modeling
• Our Monte Carlo seems up to the task

• Perhaps best used where statistical errors dominate
• Trees are very complex and any attempt to understand the

whole thing may be pointless

However
• Worthwhile to try to understand parts of trees
• Combination CLP - Iso1 occurred often

• Now being used in other analyses
• Even simpler trees do better than the cuts they suggest

We think this novel method deserves further exploration

Eric Vaandering – Genetic Programming and HEP – p.60/62

Backup slides

Backup slides

Eric Vaandering – Genetic Programming and HEP – p.61/62

f (n) function
A threshold function used in neural networks:

f(n) =
1

1 + e−n

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1/(1+exp(-x))

Eric Vaandering – Genetic Programming and HEP – p.62/62

	Overview
	Genesis
	Machine Learning
	Genetic Programming
	Genetic Programming
	Programming Assumptions
	GP principles
	Populations and Generations
	Gene Cross-over and Mutation
	Preparatory Steps
	Tree Representation
	Tree Representation, cont.
	Genetic Programming Process
	Building a tree
	Building a tree
	Building a tree
	Building a tree
	Crossover (Recombination)
	Mutation
	Mutation
	Mutation
	Practical considerations
	Survival of the Fittest
	Reproduction Probabilities
	Tournament Selection
	Running the GP
	Parallelizing the GP
	Parallelizing the GP
	Application to HEP
	What's it good for?
	An Easy Problem
	A Difficult Problem
	Questions
	FOCUS Spectrometer
	Target and Vertexing
	Variables and Operators
	An Example Tree
	Cabibbo Suppressed Decays
	kpipidcsd
	After skim (pre-GP)
signals
	Evaluating the GP
	Evolutionary Trajectory
	Expansion of best trees
	CF and DCSD signals
	Best tree (40 generations)
	Comparison with Cut Method
	What about bias?
	Bias, continued
	Tuning GP parameters
	Data MC comparisons
	pkpidcsd
	After skim (pre-GP)
signals
	lc Evolutionary Trajectory
	Expansion of best trees
	pkpi (CF)
signal
	pkpidcsd (DCS)
signal
	Best tree (40 generations)
	Comparison with Cut Method
	Conclusions
	Backup slides
	$f(n)$
function

