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Overview
• Machine learning techniques
• Introduction to Genetic Programming

• Populations and Generations
• Mutation and Crossover
• Fitness and Natural Selection

• Genetic Programming applied to doubly Cabibbo
suppressed decays
• D+ → K+π+π−

• Λ+
c → pK+π−
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Genesis
I first learned of this technique from our VAMPIRE colleauges in
the VU Medical Center.

They work in the Human Genetics program and use this
technique to study gene expression levels to predict which type
of breast cancer a person is susceptable to (among other things).

The fact that their technique is called Genetic Programming and
that they are Geneticists is completely unrelated, a pure
coincidence.

But, I thought maybe I could apply this technique to high energy
physics.
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Machine Learning
There has been a long interest in teaching machines to
“automatically” solve problems, given the broad parameters of
the possible solutions.

For all but the simplest problems, exhaustive or completely
random searches are impractical. There are numerous attempts to
automatically find solutions: neural nets, simulated annealing,
expert systems, etc.

To find the best solution, maybe we should take a clue from
biology and the evolutionary process. (→ Genetic Algorithms)

Since we will use computer programs to implement our
solutions, maybe the form of our solution should be a computer
program.

Combined, these last two points form the basis of
Genetic Programming
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Genetic Programming
“How can computers learn to solve problems without being
explicitly programmed? In other words, how can computers be
made to do what is needed to be done, without being told exactly
how to do it?”

— Attributed to Arthur Samuel, 1959
(Pioneer of Artificial Intelligence,
coined term “machine learning”)

“Genetic programming is automatic programming. For the first
time since the idea of automatic programming was first discussed
in the late 40’s and early 50’s, we have a set of non-trivial,
non-tailored, computer-generated programs that satisfy Samuel’s
exhortation: ‘Tell the computer what to do, not how to do it.’ ”

— John Holland, University of Michigan, 1997
(Pioneer of Genetic Algorithms)
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Genetic Programming
Definition:

Genetic Programming is a probabilistic search algorithm that
iteratively transforms a set (population) of programs, each with
an associated fitness value, into a new population of offspring
programs using the Darwinian principle of natural selection and
operations that mimic naturally occurring genetic operations,
such as sexual recombination (crossover) and mutation.

• Applies a model of biological evolution to program
“discovery”

• Pioneered by John Koza in 1989
• Seminal reference: Genetic Programming: On the

Programming of Computers by Natural Selection (Koza,
1992)

• Since 1992, more than 3,000 papers applied to a wide range
of problems
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Programming Assumptions
Normally when we program, we assume a number of guidelines:

• Correctness: The solution works perfectly
• Consistency: The problem has one preferred solution
• Justifiability: It is apparent why the solution works
• Certainty: A solution exists
• Orderliness: The solution proceeds in a orderly way
• Brevity: Every part of the solution is necessary, a shorter

solution is better (Occam’s Razor)
• Decisiveness: We know when the solution is complete

Genetic Programming requires that all of
these assumptions be discarded
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GP principles
In fact, in Genetic Programming:

• Correctness: A solution may be “good enough”
• Consistency: Many very different solutions may be found
• Justifiability: It may be very unclear how or why a solution

works
• Certainty: A perfect solution may never be found
• Orderliness: A solution may be very disorganized
• Brevity: Large parts of the solution may do nothing
• Decisiveness: We may never know if the best solution has

been found
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Populations and Generations
Genetic Programming works by transforming one group of
individuals (programs) in generation n into another group of
individuals in generation n + 1. There are typically a few
hundred to a few thousand programs per generation.

Typically the number of individuals in each generation is the
same. Usually no duplication is allowed in the 1st (or 0th)
generation. Duplication is allowed in later generations.
(Diversity decreases.)

There are GP implementations where change is not generational,
but adiabatic. In these implementations, when a new individual
is created, an old one is usually “killed,” keeping the population
size the same.
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Gene Cross-over and Mutation
Biological

(DNA)
Cross-over

Mutations in nature change the genetic code for a small region of
DNA. Usually are harmful or neutral; occasionally helpful
(creates a better/different protein).

Mutations can restore lost (or never present) diversity.

These two processes, combined with natural selection,
drive biological evolution.
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Preparatory Steps
To prepare to solve a problem with Genetic Programming, two
steps are necessary:

• Define a series of functions
• Some functions may return a variable or input
• Other functions may perform an operation

• +, −, >, < are all “functions”
• So are IF-THEN-ELSE and DO (FOR) constructs

• Define the fitness of the program. Examples:
• How many events does it classify correctly?
• In how many cases does it provide the correct output?
• How well does it fit the data?
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Tree Representation
Genetic Programming fundamentals are easier to illustrate if we
adopt a “Tree” representation of a program. An example of this
representation:

C code: Program tree

float myfunc(float x, float y) {
float val;
if (x > y) {

val = x*x + y;
} else {

val = y*y + x;
}
return val;

}

IF

>

x y

+

×

x x

y

+

×

y y

x
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Tree Representation, cont.
From a fraction of our tree, we can see a few things:

+

×

x x

y

Two kinds of “nodes”
• There are functions (IF, >, +, ∗)
• There are “terminals” (x, y)
• A function can have any number of

arguments (IF has three, sinx has
one)

If we allow any function or terminal at any position, then all
operations must be allowed:

• IF (float)
• x + (y > x)

• Divide by zero (if we use division)
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Genetic Programming Process

Create Initial
Population

Evaluate Fitness
of Individuals

Full?
Population

Is

Criteria
Reached?

End

Select
Operation

End
Run

Population
Insert into

Start New
Population

Yes

No

Yes

No

Crossover (90%)

Copy (10%)

Mutate (1%)
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Building a tree
Trees are randomly built up one node at a time.

IF Root node ‘IF’ has 3 args.
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Building a tree
Trees are randomly built up one node at a time.

IF

>

Root node ‘IF’ has 3 args.
‘>’ chosen for 1st arg.
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Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

Root node ‘IF’ has 3 args.
‘>’ chosen for 1st arg.
x and y terminate ‘>’

Eric Vaandering – Genetic Programming and HEP – p.17/62



Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

+

*

x x

y

+

*

y y

x

Root node ‘IF’ has 3 args.
‘>’ chosen for 1st arg.
x and y terminate ‘>’
Remaining branches grown
Tree is complete
(all branches terminated)
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Crossover (Recombination)
Two programs and crossover points within them are chosen.
Sub-trees are removed and swapped between trees, giving two
new “children”

−

+

x 1

y

+

1 ×

x x

→

−

x y

+

1 ×

+

x 1

x

We hope to combine the best aspects of both parents into one
child (of course, we are just as likely to end up with the worst
aspects in one child).
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

y y

Pick a parent & mutation point
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

Pick a parent & mutation point
Remove the subtree
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Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

x +

y x

Pick a parent & mutation point
Remove the subtree
Finish the new subtree as if it
were a “root” tree

Mutation can often be very destructive in Genetic Programming
Remember, both crossover and mutation are random processes.
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Practical considerations
Obviously, a tree can grow nearly infinite in size. This is usually
undesirable. There are ways to control this:

• Set limits on number of nodes
• Set limits on depth of nodes
• Create initial topologies of specified depth

A common approach is to allow half of the initial population to
grow completely randomly and to create the other half at a range
of (shallow) depths. In the latter case, pick functions for all
nodes less than desired depth, pick terminals for all nodes at
desired depth.

So far we’ve mimiced how organisms reproduce.
The other half of the problem is why they reproduce.
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Survival of the Fittest
In nature, we know that the more fit an organism is for it’s
environment, the more likely it is to reproduce. This is one of the
basic tenets of evolutionary theory.

• Organisms with serious deformities are still-born or die at a
young age

• Faster, stronger, or longer lived organisms will produce
more offspring

The Genetic Programming method mimics this by determining a
fitness for each individual. Which individuals reproduce is based
on that fitness.

• The better the fitness, the better the solution
• The problem must allow for inexact solutions. There may

be a single correct solution, but there must be a way to
distinguish between increasingly incorrect solutions.
(Otherwise we are engaging in a random search.)
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Reproduction Probabilities
To select which individuals are chosen to help populate the next
generation, they are randomly chosen according to their fitness.
The standard method is called “fitness proportionate,” sort of a
roulette wheel where the size of the slot is proportional to the
fitness.

Good Fitness

Bad Fitness

• The best individual is most likely to be chosen
• The worst individual may be chosen
• The best individual is not guaranteed to be chosen
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Tournament Selection
Another type of selection is also used to implement survival of
the fittest. In tournament selection, a number of individuals (two
or more) are selected randomly. The most fit from that group is
selected to reproduce. The process is repeated to find a mating
partner (if needed).

We see this behavior in nature too...

Tournament Reward
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Running the GP
Putting it all together, we are ready to “run” the GP (find a
solution).

• User has defined functions and definition of fitness
• Generate a population of programs (few hundred to few

thousand) to be tested
• Test each program against fitness definition
• Choose genetic operation (crossover/mutation) and

individuals to create next generation
• Chosen randomly according to fitness

• Repeat process for next generation
• Often tens of generations are needed to find the best

solution
• At the end, we’ll have a large number of solutions; we’ll

look at the best few
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Parallelizing the GP
Each test takes a while (10–60 sec on a 2 GHz P4) so spread over
multiple computers

• Adopt a South Pacific island type model
• A population on each island (CPU)
• Every few generations, migrate the best individuals

from each island to each other island
• Lots of parameters to be tweaked, like size of programs,

probabilities of reproduction methods, exchanges, etc.
• None of them seem to matter all that much, process is

quite robust
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Parallelizing the GP
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Application to HEP
Ok, so all this is interesting to computer scientists, but how does
it apply to physics, specifically HEP?

In FOCUS, we typically select interesting (signal, we hope)
events from background processes using cuts on interesting
variables. That is, we construct variables we think are
interesting, and then require that an event pass the AND of a set
of selection criteria.

Instead, what if we give a Genetic Programming framework the
variables we think are interesting, and allow it to construct a
filter for the events?

• If an AND of cuts is the best solution, the GP can find that

We already have some experience with these types of methods.
E.g., neural networks are used effectively for B flavor tagging by
several experiments.
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What’s it good for?
• Might replace or supplement cuts
• Allow us to include indicators of interesting decays in the

selection process
• These indicators can include variables we can’t cut on

(too low efficiency)
• Can form correlations we might not think of

• Has already had this benefit
• Hope to produce a more effecient selection mechanism
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An Easy Problem
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A Difficult Problem
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Questions
When considering an approach like this, some questions
naturally arise:

• What about units? Can you add a momentum and a mass?
• All numbers are defined to be unit-less

• Is it evolving or randomly hitting on good combinations?
• The tree can grow large with useless information.
• How do we know it’s not biased?
• Does it do as well as normal cut methods do?
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FOCUS Spectrometer
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Highlights:
• Segmented target
• Silicon vertexing
• MWPC tracking

• Threshold Čerenkov
• EM/hadronic calorimeters
• Muon detectors
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Target and Vertexing

π

L

Λ

-

c
+

+

π

π

π

γ

Vertex

Secondary
Vertex

Primary Κ

p

Some details of the FOCUS candidate driven vertexing
• L: Distance between production and decay vertices. `/σ`,

significance of separation
• CLS, CLP: CLs of decay and production vertices
• Iso1: CL that tracks from decay vertex are consistent with

production vertex
• Iso2: CL that other tracks (incl. from production vertex) are

consistent with decay vertex
• OoT: Significance of decay being out of target material
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Variables and Operators
Give the GP lots of things to try:

Functions (22) Variables (D+–35, Λ+
c –37)

× sign ` ∆W (πp)

/ negate σ` ∆W (Kp)

+ max `/σ` ∆W (πK) σt

− min OoT πcon pT

xy NOT CLS Track χ2’s Σp2
T

√ AND CLP OS Vertex CL merr

log OR Iso1 OS ∆W (πK) µmax

> XOR Iso2 OS CLµ TS/NoTS

< IF #life Real (−2, +2) REME

<=> sin Pri. OoT Int (−10, +10)

f(n) cos p(Λ+
c ) 0,1

E.g.: 80 nodes (40 func., 40 var.) → 4022 × 4037 = 3.3 × 1094

combinations.
Just one topology of many (as big as 340).
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An Example Tree
Let’s look at a very simple tree. This one gives 1 when the
momentum (p) divided by the time resolution (σt) is greater than
5, gives 0 otherwise. (This is just a cut.)

>

/

p σt

5

This filter is then applied to each event in my sample and the
fitness is determined from the selected events. (The 1s.)
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Cabibbo Suppressed Decays
Doubly Cabibbo suppressed decays can only be observed in
charm. Both W vertices are Cabibbo suppressed.

q

c

q

s

d̄

u

q

c

q

d

s̄

u

Cabibbo Favored Doubly Cabibbo Suppressed

Doubly Cabibbo suppressed decays are chosen for this
application since the final state particles are often identical (e.g.,
D+ → K−π+π+ vs. D+ → K+π+π−). This eliminates many
possible sources of systematics arising from inexact modeling of
what the GP is doing.

Expected relative branching ratios: ∼ tan4 θc ≈ 0.25%.
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D+ → K+π+π−

We first want to check this method on a known doubly Cabibbo
suppressed decay. The first such decay discovered,
D+ → K+π+π− has been known for many years now and it’s
branching ratio, relative to D + → K−π+π+, is reasonably well
known. This branching ratio is surprisingly large (about
3 tan4 θc). The PDG value is 0.75 ± 0.16% relative to
D+ → K−π+π+.

Using the same data I do, a recently published FOCUS
branching ratio measurement and Dalitz analysis finds about 200
events in this mode and measures the relative branching ratio as
0.65 ± 0.08 ± 0.04%

Can a GP analysis reproduce the known branching ratio? Can it
improve upon the errors of a “traditional” analysis?
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After skim (pre-GP) signals
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Fit shows D+ → K−π+π+ normalizing mode
“Linear” histogram is DCS candidates
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Evaluating the GP
For each program the GP framework suggests, we have to tell the
framework how good the program is:

• All functions must be well defined for all input values, so
> → 1 (true) or 0 (false), log of neg. number, etc.

• Evaluate the tree for each event → a single value
• Select events for which Value of tree > 0

• Initial sample has as loose cuts as possible
• Return a fitness to framework
• Could be ∝

√
S + B/S (framework wants to minimize)

• In this case S is from CF mode scaled down to
expected/measured DCS level. B is from fit to DCS BG
(masking out signal region if appropriate).
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Evolutionary Trajectory
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Expansion of best trees
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CF and DCSD signals

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

2000

4000

6000

8000

10000

12000

Selected CF & DCS

 255±Yield = 62441 

Selected CF & DCS

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

120

140

160

180

Selected DCS

 36±Yield = 466 

Selected DCS

• Retains 62K of 253K original CF events
• DCS background reduced a factor > 150

• DCS mass and width are fixed to CF values
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Best tree (40 generations)
min

AND

×

×

<

<=>

ln

#τ

/

p σt

×

XOR

#τ POT

+

XOR

#τ Iso2

min

OoT πcon2

NOT
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+

σM ×
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NOT
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ln

−
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∆πK 1
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Comparison with Cut Method
How does this compare with our normal method?

• From PLB 601 10–19, measured BR of D+ → K+π+π−

• Rel. BR — PLB: 0.65 ± 0.08 ± 0.04, GP: 0.76 ± 0.06

• Not a perfect comparison, not optimized on S/
√

S + B

invariant mass K+ π- π+
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• Similar signal to noise
• Cuts: Yield = 189 ± 24 events
• GP: Yield = 466 ± 36 events
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What about bias?
Try to reduce by putting in a penalty (0.5%) for each node (make
sure added nodes are valuable).
Then, to test for bias, optimize on only half the events (left).
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No evidence of selection induced bias here.
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Bias, continued
Look at the same plots for doubly Cabibbo suppressed events.
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Doubly Cabibbo suppressed distributions are also similar: 2135
(optimized) vs. 2123 (unoptimized) events in whole plot.
(Remember optimization is blind to signal region, so differences
there not due to GP.)
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Tuning GP parameters
Start: 20 CPUs, 1000 trees/CPU, 6 gen. Doubled each parameter
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• Cleaner starting sample for these studies
• Points are average, dotted line is best
• More generations is only clear improvement
• Plots in analysis section use 20x1500x40
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Data MC comparisons
Since the two decays are nearly identical, what is important is
that the efficiency of the tree for CF and DCS modes is the same.
What need not be known is the absolute efficiency on a single
mode. But, we can study this with Monte Carlo.

For the 40th generation program, the MC efficiencies are:

CF Eff. (%) DCS Eff. (%)
Skim cuts 5.76 ± 0.01 5.57 ± 0.01

GP Selection 1.43 ± 0.01 1.41 ± 0.01

GP/Skim 24.91 ± 0.12 25.29 ± 0.12

But, we can look at GP/Skim for the CF mode in the data.

We find 24.66 ± 0.08% (vs. 24.91 ± 0.12%).

So, not only do the GP efficiencies for MC agree, the one place
we can compare the GP on MC and data, it also comes out very
close.
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Λ+
c → pK+π−

The next decay we consider is Λ+
c → pK+π−. There are no

observations or limits. Even an observation of tan4 θc relative to
Λ+

c → pK−π+ is challenging for FOCUS, but there is a
complication.

The Cabibbo favored mode has an W -exchange contribution
while the DCS decay does not. (This contribution is also why the
Λ+

c lifetime is about one half the Ξ+
c (csu) lifetime.)

u

d

c

u

u

q

q

s

So, the expected branching ratio will be reduced.
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After skim (pre-GP) signals
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Original CF & DCS

Lower histogram is DCS candidates
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Λ+
c Evolutionary Trajectory
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Expansion of best trees
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Λ+
c → pK−π+ (CF) signal

 / ndf 2χ  162.5 / 55
Prob   1.662e-14
p0        22.61± -261.7 
p1        10.19± 138.6 
p2        60.61±  3034 
p3        0.0001614± 2.289 
p4        0.0001596± 0.007676 
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Prob   1.662e-14
p0        22.61± -261.7 
p1        10.19± 138.6 
p2        60.61±  3034 
p3        0.0001614± 2.289 
p4        0.0001596± 0.007676 

Cabibbo Favored

Retains 3,000 of 21,300 original events, lower is DCS
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Λ+
c → pK+π− (DCS) signal

 / ndf 2χ  73.07 / 57
Prob   0.07432
p0        6.417± -9.228 
p1        2.865± 7.375 
p2        7.137± 1.093 
p3            0± 2.289 
p4            0± 0.007676 
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 / ndf 2χ  73.07 / 57
Prob   0.07432
p0        6.417± -9.228 
p1        2.865± 7.375 
p2        7.137± 1.093 
p3            0± 2.289 
p4            0± 0.007676 

DCS

Mass and width are fixed to CF values
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Best tree (40 generations)
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Comparison with Cut Method
How does this compare with our normal method?

• I’ve looked for Λ+
c → pK+π− before by maximizing

S/
√

S + B with manual “hill-climbing.”

Λc, standard cuts
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• Important quantity: σYDCS/YCF

• Cuts: σY = 4.8, Yield = 1450

• GP: σY = 7.1, Yield = 3030

• σY/Y for GP = 2.3 × 10−3

• σY/Y for cuts = 3.3 × 10−3

• GP method is ∼ 50% better,
but still need luck or significant
improvements to observe Λ+

c →
pK+π−
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Conclusions
This method shows promise, but there are some caveats

• May be more challenging for modeling
• Our Monte Carlo seems up to the task

• Perhaps best used where statistical errors dominate
• Trees are very complex and any attempt to understand the

whole thing may be pointless

However
• Worthwhile to try to understand parts of trees
• Combination CLP - Iso1 occurred often

• Now being used in other analyses
• Even simpler trees do better than the cuts they suggest

We think this novel method deserves further exploration
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Backup slides

Backup slides
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f (n) function
A threshold function used in neural networks:

f(n) =
1

1 + e−n
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