

LHC PHYSICS

Andrés G. Delannoy¹

¹Vanderbilt University

BACKGROUND The Large Hadron Collider The Standard Model The Higgs Mechanism SuperSymmetry

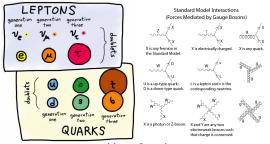
- 2 LHC Physics Program Search for New Physics Higgs Physics Results SUSY Physics Results Standard Model Physics Results
- 3 Summary

THE LARGE HADRON COLLIDER

- Largest and most powerful particle accelerator
- 26.6 km (16.5 mi) circumference tunnel, from 50-175 m (165-575 ft) underground
- 2808 bunches of protons circulate around the tunnel (each bunch $\sim 10^{11}$ protons)
 - each proton traverses the tunnel more than 11,000 times per second
- + 1232 dipoles operating at 1.9 K (-456 $^\circ F)$ generating $\sim 8~T$
- Beam tube under ultrahigh vacuum (10^{-13} atm)

The Standard Model

- Describes the universe as a collection of interacting *quantized fields* (each corresponding to an elementary particle)
 - excitations in the *matter fields* \rightarrow quarks and leptons
 - excitations in the *gauge fields* \rightarrow gauge bosons
- Gauge bosons mediate the interactions between matter fields (i.e. "quarks and lepton interact by exchanging gauge bosons")


2014/07/21

BACKGROUND

INTERACTING QUARKS AND LEPTONS

- Fundamental *fermions* are spin-1/2 "matter" particles:
 - Quarks: *udcstb*
 - Participate in EM, weak, and strong interactions
 - Leptons: $e\mu \tau \nu_e \nu_\mu \nu_\tau$
 - Only participate in EM and weak interactions
- Integer-spin *Gauge Bosons* are "force carrier" particles:
 - Photon (γ) mediates EM interactions
 - Weak vector bosons (Z^0, W^{\pm}) mediate weak interactions
 - Gluon (g) mediates strong interactions

2014/07/21

THE BROUT-ENGLERT-HIGGS MECHANISM

- Why is the range of EM and weak interactions different ?
 - Consider two candles, identical upon close inspection
 - However, one candle dims when observed from afar
 - When the room temperature is raised enough, the difference disappears
 - Perhaps a strange "fog" affects only one of the candles?

- The Higgs field behaves analogously to this "selective fog"
 - Limits the range of weak interactions
 - Implies weak bosons, and all other particles interacting with Higgs field, are massive
 - EM and weak interactions are *identical* at electro-weak scale

SUPERSYMMETRY

BACKGROUND

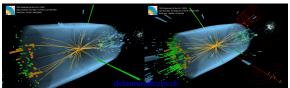
ooooo SuperSymmetry

- Unresolved issues not addressed by Standard Model
 - Observation of dark matter
 - Failure to describe gravitational interactions
- SUSY postulates a symmetry between bosons and fermions
 - Predicts a "superpartner" for each Standard Model particle
 - Predicts a stable dark matter particle candidate
 - Avoid fine-tuning (solves Hierarchy Problem) via particle-sparticle quantum correction cancellations
 - Given local gauge symmetry, General Relativity can be automatically integrated in SUSY

LHC PHYSICS PROGRAM

- Higgs Program:
 - Is the BEH mechanism responsible for EW symmetry breaking?
 - Is the recently–discovered Higgs–like bosons *the* SM Higgs boson?
- Beyond the Standard Model Physics Program:
 - What is the nature of Dark Matter?
 - Is broken SuperSymmetry a feature of Nature?
 - Are there observable compactified extra dimensions at LHC scales?
 - Are there additional elementary particles (e.g. additional gauge–bosons, gravitons, leptoquarks, heavy neutrinos, black holes, etc.)?
- Standard Model Physics Program:
 - Bottom–quark physics
 - Top–quark physics
 - Heavy–Ion Physics

SEARCH FOR NEW PHYSICS

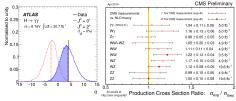

- How do we find evidence of new particles...?
 - We hunt for Bigfoot!
 - No chance of direct observation. Next best thing: footprints
 - Not enough to find a peculiar footprint.
 - Must first predict or calculate how many known species' footprints will mimic Bigfoot's
 - Then comb the field for all footprints with the "Bigfoot signature"
 - Compare data with prediction. Is there a *statistically significant* excess of footprints? *Maybe* due to new species!
 - Are the excess footprints all around the same size (this may tell us about Bigfoot's size and weight)?

SEARCH FOR NEW PHYSICS

- Case Study: The recent Higgs boson discovery
 - No chance of direct observation. Next best thing: decay products
 - Not enough to find a peculiar "event".
 - Must first predict or calculate how many known SM processes will mimic Higgs decay
 - Then collect LHC data for all events with the "Higgs-decay signature"
 - Compare data with prediction. Is there a *statistically significant* excess of events? *Maybe* due to new particle!
 - Are the excess events all around the same energy (this may tell us about the Higgs mass)?
 - Animations: Hgg, H4L, HWW.

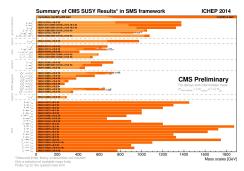
2014/07/21

HIGGS PHYSICS RESULTS


- In July 2012, the CMS and ATLAS collaborations announced the observation of a new boson
 - On March 2013, both stated that the spin-parity is consistent with *a* Higgs boson
- Is it *the* Standard Model predicted Higgs?
 - Precision measurements of Higgs mass
 - Precision measurements of Higgs spin-parity (SM predicts 0–spin, +parity)
 - Fermionic Higgs decay
 - Given the Higgs boson mass, we can predict how often it will decay into each "channel"
 - Resonance features can tell us about the boson's properties (width of resonance → Higgs lifetime)

HIGGS PHYSICS RESULTS

- Is it *the* Standard Model predicted Higgs? Current Status:
 - Higgs mass 125 ± 0.5 GeV (HIG-14-009,CONF-2013-12)
 - Higgs spin-parity results consistent with $J^p = 0^+$ (HIG-12-041,CONF-2013-040)
 - Observation of fermionic Higgs decay (HIG-13-003: $VH \rightarrow b\bar{b}, H \rightarrow \tau\tau$, CONF-2013-108: $H \rightarrow \tau\tau$)
 - Higgs coupling measurements consistent with SM (CONF-2014-009: $\mu = 1.30 \pm 0.26$, HIG-14-009: $\mu = 1.00 \pm 0.15$)
 - Higgs width consistent with SM $\Gamma_H < 4.2\Gamma_H(SM)$ (HIG-14-002)

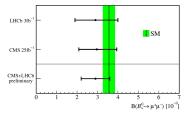


BACKGROUND 00000 SUSY Physics Results

SUSY PHYSICS RESULTS

- No evidence for SUSY, despite decades in pursuit
 - SUSY is a concept that a given theory may or may not feature. Hence, it is very difficult to entirely rule out
 - Typically, exclusion limits are assigned to a given SUSY model, when it fails to exhibit signs of new physics

SUSY PHYSICS RESULTS


- Case Study: SUS-13-013
 - Search for new physics in events with same-sign dileptons and jets
 - $pp \rightarrow SUSY \rightarrow (ee, e\mu, \mu\mu) + jets + E_T^{miss}$
 - expect significant hadronic activity in addition to two leptons and E_T^{miss} from stable LSP
 - $pp \rightarrow SUSY \rightarrow (ee, e\mu, \mu\mu) + jets$
 - expect significant hadronic activity in addition to two leptons and sensitive R-parity violating models
 - Backgrounds:"Non-Prompt leptons", charge misidentification, *ttW*, *ttZ*, and diboson

Region	Low-p _T				High-p _T				SR	Expected			Observed
	Expected			Observed	Expected		ted	Observed -	RPV0	20		14	35
SR01	44	±	16	50	51	±	18	48	KPV0	38	±	14	35
SR02	12	\pm	4	17	9.0	\pm	3.5	11	RPV2	5.3	\pm	2.1	5
SR03	12	\pm	5	13	8.0	\pm	3.1	5	SStop1	160	+	59	152
SR04	9.1	\pm	3.4	4	5.6	\pm	2.1	2	1			• •	
SR05	21	\pm	8	22	20	\pm	7	12	SStop1++	90	±	32	92
SR06	13	\pm	5	18	9	\pm	4	11	SStop2	40	\pm	13	52
SR07	3.5	\pm	1.4	2	2.4	\pm	1.0	1	SStop2++	22	+	8	25
SR08	5.8	\pm	2.1	4	3.6	\pm	1.5	3	55t0p2++	22	1	0	23

STANDARD MODEL PHYSICS RESULTS

- Case Study: BPH-13-007
 - Combination of results on the rare decays $B_s^0 \rightarrow \mu^+ \mu^-$ from the CMS and LHCb experiments
 - Very very rare flavour-changing neutral-current decay: $B(B_s^0 \to \mu^+\mu^-) = (3.56 \pm 0.30)10^{-9}$
 - Any observation of this decay above the SM rate would be clear evidence of new physics
 - A large number of SUSY models are inconsistent with this measurement and are therefore ruled out

SUMMARY

- The Standard Model seems quite robust
- The Higgs discovery was a great victory for the High–Energy Physics community, and an incredible achievement for humankind
- SUSY is slowly being cornered, but some hope remains that it may hide in unexplored parameter space
- With the restart of the LHC at its design center–of–mass energy, the community is anxious with anticipation of new physics
- Meanwhile, physics analyses are chugging along and continue to publish new results by analysing the volumes of LHC data already recorded

Comments