

LHC PHYSICS

Andrés G. Delannoy¹

¹Vanderbilt University

2015/07/20

- BACKGROUND The Large Hadron Collider The Standard Model Beyond the Standard Model
- 2 LHC Physics Program LHC Physics Program Search for New Physics Higgs Physics Results SUSY Physics Results Standard Model Physics Results
- 3 Summary References and Resources Questions/Comments Backup

BACKGROUND •000000 The Large Hadron Collider

LHC Physics Program

Summary 00000

Largest and most powerful particle accelerator mber of magnets 26.6 km (16.5 mi) circumference tunnel, from of main quadru 50-175 m (165-575 ft) underground 1232 dipoles operating at 1.9 K (-456 °F) generating $\sim 8 \text{ T}$ Beam tube under ultra-high vacuum (10^{-13} ALICE atm) ATLAS SPS 2808 bunches of protons circulate around the tunnel (each bunch $\sim 10^{11}$ protons) Each proton traverses the tunnel more than 11,000 times per second Roughly 600M collisions per second (~ 1000 TB/s) CERN Tier0 stores and distributes $\sim 10 \text{ GB/s}$ globally delannov@cern.ch 2015/07/20

LHC Physics Program

Describes the universe as a collection of interacting *quantized fields* (each corresponding to an elementary particle)

- excitations in the *matter fields* \rightarrow quarks and leptons
- excitations in the gauge fields \rightarrow gauge bosons
- Gauge fields mediate the interactions between matter fields
- "Quarks and leptons interact by exchanging gauge bosons"

-> -2.3 MaM//

up

C

down

е

neutrino

neutrino

0.511 MeV/cf

1/2

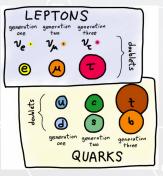
1/2

EPTONS

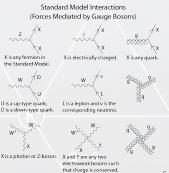
1/2

charge

W boson



LHC Physics Program


Summary 00000

- Fundamental *fermions* are spin-1/2 "matter" particles:
 - Quarks: u, d, c, s, t, b
 - Participate in EM, weak, and strong interactions
 - Leptons: $e, \mu, \tau, \nu_e, \nu_\mu, \nu_\tau$
 - Only participate in EM and weak interactions

- Integer-spin *Gauge Bosons* are "force carrier" particles:
 - Photon (γ)
 - Mediates EM interactions
 - Weak vector bosons (Z^0, W^{\pm})
 - Mediates weak interactions
 - Gluon (g)
 - Mediates strong interactions

LHC Physics Program

Summary 00000

The Brout-Englert-Higgs Mechanism

- Why is the range of EM and weak interactions different ?
- Consider two candles, identical upon close inspection
- However, one candle dims when observed from afar
- When the room temperature is raised enough, this difference disappears
- Perhaps a strange "fog" affects only one of the candles?

- The Higgs field behaves analogously to this "selective fog"
 - Limits the range of weak interactions [parity violation]
 - Implies weak bosons, and all other particles interacting with Higgs field, are massive
 - The difference between a massive and massless particle is whether or not it can travel at the speed of light!
 - EM and weak interactions are *identical* and *symmetric* at the electro-weak scale

BACKGROUND 0000000 The Standard Model LHC Physics Program

Summary 00000

The Brout-Englert-Higgs Mechanism

- Crowd analogy
- A regular person (massless particle) has no trouble moving across a crowded room
- A famous person (massive particle) is slowed-down by the crowd
- A juicy rumor (Higgs particle) can spread through the crowd
 - Remark on macroscopic mass
 - Higgs mechanism is only responsible for the masses of *elementary* particles
 - The Higgs has *nothing* to do with gravitational mass
 - Bound states (nucleons, nuclei, atoms, molecules) get most of their mass from "binding energy"
 - e.g. $m_H > (m_p m_e), \Delta m \sim 1.13 \text{ MeV}$

BACKGROUND 0000000 Beyond the Standard Model LHC Physics Program

Summary 00000

Dark Matter

- Around 85% of the matter in the universe is composed of Dark Matter
 - Only evidence for gravitational interaction
 - Galaxy rotation curves
 - Gravitational lensing
 - Cosmic microwave background
 - Does not interact electro-magnetically
- Assumptions: Streetlight effect
 - Perhaps dark matter is made up of new kind of elementary particle
 - Would be massive (gravitational interaction)
 - Would not have charge (no EM interaction)
 - May or may not interact weakly

BACKGROUND 000000 Beyond the Standard Model LHC Physics Program

Summary 00000

SuperSymmetry

- Can resolve issues not addressed by Standard Model
 - Hierarchy Problem more
 - Dark Matter
 - Failure to describe gravitational interactions
- SUSY postulates a symmetry between bosons and fermions
 - Predicts a "superpartner" for each Standard Model particle
 - Can predict a stable dark matter particle candidate (LSP)
 - Avoids fine-tuning (Hierarchy Problem) via particle-sparticle quantum correction cancellations
 - Given local gauge symmetry, General Relativity can be integrated in SUSY

BACKGROUND 0000000 LHC Physics Program

- Higgs Program:
 - Is the BEH mechanism responsible for EW symmetry breaking?
 - Is the recently-discovered Higgs boson *the* SM Higgs boson?
- Beyond the Standard Model Physics Program:
 - What is the nature of Dark Matter?
 - Is broken SuperSymmetry a feature of Nature?
 - Are there observable compactified extra dimensions at LHC scales?
 - Are there additional elementary particles (e.g. additional gauge–bosons, gravitons, leptoquarks, heavy neutrinos, black holes, etc.)?
- Standard Model Physics Program:
 - Bottom–quark physics
 - Top–quark physics
 - Heavy–Ion Physics

BACKGROUND 0000000 Search for New Physics

Summary 00000

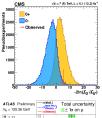
V

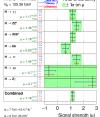
- How do we find evidence of new particles...?
 - We hunt for Bigfoot!
 - No chance of direct observation.
 - Next best thing: footprints
 - Not enough to find a distinctive footprint.
 - Must first predict or calculate how many known species' footprints will mimic Bigfoot's
 - Then comb the field for all footprints with the "Bigfoot signature"
 - Compare data with prediction.
 - Is there a *statistically significant* excess of footprints?
 - Maybe due to new species!
 - Are the excess footprints all around the same size?
 - This may tell us about Bigfoot's size and weight

BACKGROUND 0000000 Search for New Physics Run/Event: 195099 / 137440354

- Case Study: The recent Higgs boson discovery
 - No chance of direct observation.
 - Next best thing: *decay products*
 - Not enough to find a distinctive "event".
 - Must first predict or calculate how many known SM processes will mimic Higgs decay
 - Then collect LHC data for all events with the "Higgs-decay signature"
 - Compare data with prediction.
 - Is there a *statistically significant* excess of events?
 - Maybe due to new particle!
 - Are the excess events all around the same energy?
 - This may tell us about the Higgs mass

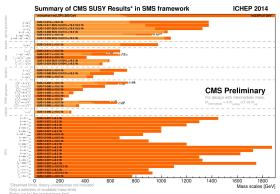
BACKGROUND 0000000 Higgs Physics Results


Higgs Physics Results

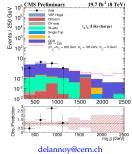

- In July 2012, the CMS and ATLAS collaborations announced the observation of a new boson
 - On March 2013, both stated that the spin-parity is consistent with *a* Higgs boson
- Is it the Standard Model predicted Higgs?
 - Precision measurements of Higgs mass
 - Precision measurements of Higgs spin-parity
 - SM predicts 0-spin, +parity
 - Fermionic Higgs decay
 - Given the Higgs boson mass, we can predict how often it will decay into each "channel"
 - Resonance features can tell us about the boson's properties
 - width of resonance \rightarrow Higgs lifetime

Higgs Physics Results

- Is it *the* Standard Model predicted Higgs? Current Status:
 - Higgs mass 125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV
 - CMS-HIG-14-042, ATLAS-HIGG-2014-14
 - Higgs spin-parity results consistent with $J^P = 0^+$
 - CMS-HIG-12-041, ATLAS-CONF-2015-008,
 - Observation of fermionic Higgs decay
 - CMS-HIG-13-003: $VH \rightarrow b\bar{b}, H \rightarrow \tau\tau$, ATLAS-CONF-2013-108: $H \rightarrow \tau\tau$, ATLAS-HIGG-2013-27: $Ht \rightarrow b\bar{b}$
 - Higgs coupling measurements consistent with SM
 - ATLAS-CONF-2015-007: $\mu = 1.30 \pm 0.26$, CMS-HIG-14-009: $\mu = 1.00 \pm 0.15$
 - Higgs width consistent with SM $\Gamma_H < 4.2\Gamma_H(SM)$
 - CMS-HIG-14-002



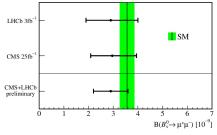
Summary 00000



SUSY Physics Results

- No evidence for SUSY, despite decades in pursuit
 - SUSY is a concept that a given theory may or may not feature. Hence, it is very difficult to entirely rule out
 - Typically, exclusion limits are assigned to a given SUSY model, when it fails to exhibit signs of new physics

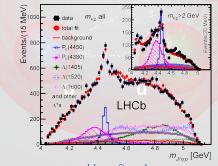
- Case Study: SUS-14-005
 - Search for supersymmetry with the VBF topology
- Gluon-boson fusion is the dominant process at the LHC. The most common types of events are quark/gluon "sprays" or "jets" (hadronization)
- Vector-boson fusion (VBF) can lead to rarer EW processes and its "forward-jet" signature make it easy to distinguish
 - Search Signature:
 - 2 highly-energetic forward jets, two leptons, and momentum imbalance



SUSY Physics Results

Standard Model Physics Results

- Case Study: BPH-13-007
 - Combination of results on the rare decays $B_s^0 \rightarrow \mu^+ \mu^-$ from the CMS and LHCb experiments
 - Very very rare flavour-changing neutral-current decay: $B(B_s^0 \rightarrow \mu^+\mu^-) = (3.56 \pm 0.30)10^{-9}$
 - Any observation of this decay above the SM rate would be clear evidence of new physics
 - A large number of SUSY models are inconsistent with this measurement and are therefore ruled out



BACKGROUND 0000000 Standard Model Physics Results Summary 00000

Standard Model Physics Results

- Case Study: LHCb-PAPER-2015-029 (Pentaquarks!)
 - Last week, the LHCb collaboration reported the first-ever observation of pentaquark particles: $P_c(4450)^+$ and $P_c(4380)^+$ (c, \bar{c}, u, u, d) [$J^p = (3/2^{\pm}, 5/2^{\mp})$]
 - $\Lambda_b(b, u, d) \to J/\psi P_c^+ \to J/\psi(pK^-)$
 - $\Lambda_b(b, u, d) \rightarrow J/\psi \Lambda^*(s, u, d) \rightarrow J/\psi(pK^-)$ (~ 5% of background contamination)
 - Signal significance: $P_c(4450)^+ \rightarrow 12\sigma$ and $P_c(4380)^+ \rightarrow 9\sigma$

Summary

- The Standard Model seems stubbornly robust
- The Higgs discovery was a great victory for the High–Energy Physics community, and an incredible achievement for humankind
- SUSY is slowly being cornered, but some hope remains that it may hide in unexplored parameter space
- With the restart of the LHC at its design center–of–mass energy, the community is anxious with anticipation of new physics
- Meanwhile, physics analyses are chugging along and continue to publish new results by analysing the volumes of LHC data already recorded

Summary •0000

References and Resources

- CMS Experiment
 - CMS detector overview
 - CMS Experiment Public Physics Results
 - CMS interactive online event display
 - CMS International Masterclasses
- ATLAS Experiment
 - ATLAS multimedia
 - ATLAS Experiment Public Physics Results
- US–LHC
 - CERN F.A.Q. LHC: The Guide [pdf]
 - LHC Milestones
- CERN
 - Resources for Students & Educators
 - Bubble Chamber interactive guide
 - CERN Open Data

References and Resources

- Videos, Talks, Documentaries:
 - Particle Fever [netflix] [youtube]
 - Nova Big Bang Machine [youtube]
 - M.Peskin on LHC Physics [youtube]
 - S.Carroll on the Higgs Mechanism [youtube]
 - HEP/Cosmology videos by D.Lincoln (FNAL) [youtube]
 - Animated ATLAS detector overview [youtube]
 - Animation of LHC accelerator complex [youtube]
 - Animation of LHC computing data flow [youtube]
 - PhD Comics on the Higgs [vimeo]
 - PhD Comics on Dark Matter [vimeo]
- Blogs:
 - M.Strassler [Rutgers]
 - S.Carroll [Caltech]
 - J.Butterworth [University College London]
 - Quantum Diaries [Multiple Bloggers]
- Games:
 - Collider
 - Particle Clicker

BACKGROUND 0000000 Questions/Comments LHC Physics Program

Summary

Questions/Comments

oh god how did this get in here I am not good with computers

2015/07/20

delannoy@cern.ch

22

SUSY Physics Results

- Case Study: SUS-13-013
 - Search for new physics in events with same-sign dileptons and jets
 - $pp \rightarrow SUSY \rightarrow (ee, e\mu, \mu\mu) + jets + E_T^{miss}$
 - expect significant hadronic activity in addition to two leptons and E_T^{miss} from stable LSP
 - $pp \rightarrow SUSY \rightarrow (ee, e\mu, \mu\mu) + jets$
 - expect significant hadronic activity in addition to two leptons and sensitive R-parity violating models
 - Backgrounds: "Non-Prompt leptons", charge misidentification, *ttW*, *ttZ*, and diboson

Region	Low-p _T				High-p _T				SR	Expected		Observed	
	Expected			Observed	Expected		ed	Observed	DDV0	20	L	14	25
SR01	44	\pm	16	50	51	±	18	48	RPV0	38	Ŧ	14	35
SR02	12	\pm	4	17	9.0	\pm	3.5	11	RPV2	5.3	\pm	2.1	5
SR03	12	\pm	5	13	8.0	±	3.1	5	SStop1	160	+	59	152
SR04	9.1	\pm	3.4	4	5.6	\pm	2.1	2				•••	
SR05	21	\pm	8	22	20	\pm	7	12	SStop1++	90	\pm	32	92
SR06	13	\pm	5	18	9	\pm	4	11	SStop2	40	\pm	13	52
SR07	3.5	\pm	1.4	2	2.4	\pm	1.0	1	SStop2++	22	+	8	25
SR08	5.8	\pm	2.1	4	3.6	\pm	1.5	3	55t0p2++	22	1	0	

Summary

The Hierarchy Problem: electron self-energy Electrostatics

- Energy of a uniformly-charged spherical shell
 - $E = \frac{1}{2} \frac{1}{4\pi\epsilon_0} \frac{q^2}{R}$
 - See Griffiths E&M, Section 2.4.3, Example 2.8
- Electron "self-energy":
 - $(m_e c^2)_{\text{observed}} = (m_e c^2)_{\text{bare}} + \frac{1}{2} \frac{1}{4\pi\epsilon_0} \frac{q^2}{R}$
 - 511 keV = $(m_e c^2)_{\text{bare}} + 7.18 \cdot 10^6 \text{ keV}$
 - where $R \sim R_e^{\text{experimental}} < 10^{-19} m$
 - $(m_e c^2)_{\text{bare}}$ needs "fine-tuning" to cancel electron's self-energy

Quantum Mechanics: positron

- $\Delta t \Delta E \sim \hbar$
 - Virtual electron-positron pairs "smear out" electron charge
 - These effects become important at length scales:

•
$$r = c\Delta t \sim \hbar c / \Delta E \sim \hbar c / 2mc^2 \sim 2 \cdot 10^{-13} m$$

- $(m_e c^2)_{\text{observed}} = (m_e c^2)_{\text{bare}} [1 + \frac{3\alpha}{4\pi} log \frac{\hbar}{m_e c r_e}]$
 - See arXiv:hep-ph/0002232

