Multiple Choice (2 pts each, show work)

a) Sketch the magnetic field of a wire carrying a current I.(2 pts)

- b) A magnetic field of 0.52 T makes an angle with respect to the velocity of a particle with charge 1.0x10⁻¹² C traveling at 1000 m/s. If the magnitude of the force on the particle due to the magnetic field is 1.0x10⁻¹⁰ N, which of these angles best describes the angle of the magnetic field with respect to the particle velocity? (2 pts)
- i) 10
- ii) 50
- **而入10**
- iv) 20⁰
- v) 340 The sales of the response discrepablican states and the sales
- $F = gv \times B \qquad F = gv \times Sin \Theta$ $\Theta = Sin^{-1} \frac{F}{gvB} = Sin \left(\frac{10^{-10}N}{10^{-12}C \cdot 1000 \text{m/s} \cdot 2052}T\right)$
- al briancel reciped recipies access calls c) An electron is in a circular orbit in a magnetic field of 1.0 micro-Tesla. What is the magnitude of the angular frequency with which this particle rotates(hint: ω=v/r)? (2 pts)
 - i) 60 giga-rads/sec
- ii) 0.11 rads/sec
- iii) 8.8 rads/sec
- iv) 1.0 micro-rads/sec
- v) 18 miero-rads/sec

- stoothe comer = gu Brooking soll inte V=W= 9B= 1.602×10-19/2 1×10-67
- d) What is the magnetic field in the center of a 0.25 m long solenoid with 5000 turns that carries 2.0 A?(2pts)
- i)_0.06 Tesla
- ii) 0.05 Tesla
- iii) 130000 Tesla
- iv) 5 micro-Tesla
- v) 1.3 Tesla

- B= 4 TIX (07 5000 2.0A = B= MONI = 0.05 T

Multiple Choice (contd.)

e) With an increase in temperature inside a conductor like tungsten, should you expect the drift velocity to increase, decrease or remain the same? (Please give a ~ 5 word justification for your answer. You can use formulas in your explanation.)(2pts)

ots) expect g to increase, I decreases, U decreases or less time bet collisions at smaller

(Stay the same.)
(Decrease)
(Increase.)

f) 2 wires carry identical current and are situated as shown in the figure below. Where must a 3rd wire, which carries an identical current, in an identical direction to the 1st 2 wires, be placed to double the magnetic field at point P due to the original 2 wires? (Draw B directions on figure)(2pts)

- i) Point D
- ii) Point A
- iv) Point B iv) Point P
 - v) Point C

g) An isolated capacitor in air has a stored energy of 1.0 nano-J.

If we now insert a dielectric material of dielectric constant k=1.3 into the gap of the capacitor, what is the new stored energy of the capacitor?

(Hint: Use charge conservation.)(2pts)

- i) 1.3 nano-J
- ii) 0.77 nano-J
- iii) 1.7 nano-J
- iv) 0.59 nano-J
- v) 1.0 nano-J

- h) What is the resistivity of a conducting wire of length 2.0 m, cross-sectional area of 1.0 mm², and resistance of 1.0 Ohm? (2 pts.)
- i) 20 Ohm-m
- ji) 2.0 micro-Ohm-m
- iii) 1)2 micro-Ohm-m
- iv) 20 Mega-Ohm-m
- v) 2.0 Ohm-m

$$R = \rho \frac{l}{A} \qquad \rho = \frac{|lm|^2 \cdot |lm|^2}{2m} = \frac{1}{2} n \Omega$$

2) Circuit (16 pts)

(In the diagram below, all capacitors are initially uncharged. All wires used are conducting wires.)

i) What is the equivalent resistance between points e) and g)?(1pts)

R_{eg}= SJ-

actobleto si Nesca wor, ew b

- The property of \$100 met.

dzvisavo poposác sa s

ii) What is the equivalent resistance between points d) and g)?(2pts)

iii) If point "a" is connected to point "d" with a wire and 0.57 Amps of current flow through R_{batt}, what is R_{batt}?(3pts)

D. Trigitise tra yetta ramesulten en la unudurigazago geb

²) Circuit (contd.) (In the diagram below, all capacitors are initially uncharged, and all wires used are conducting wires.)

iv) If point "a" is connected to point "b" with a wire, and we wait for the current to stop flowing (i.e. after a very long time), what will be the charge on capacitor C₂? (3pts)

v) Now, the wire between points "a" and "b" is removed without changing the charges (from "after a very long time" in part iv)) on C₁ or C₂. Then point "c" is connected to point "f" with a wire. What is the charge on C₃ after the charges have stopped moving? (4pts)

4pts)

$$Connected$$
, $Vsame$
 $Q_2 = Q_3$ $Q_1 + Q_3 = 50mC$
 $Q_2 = Q_3$ $Q_3 = Q_3$
 $Q_3 = Q_3 = Q_3$
 $Q_4 = Q_3 = Q_3$
 $Q_5 = Q_3 = Q_3$

vi) Now, the wire between points "c" and "f" is removed without changing the charges (from "after the charges have stopped moving" in part v)) on C_1 , C_2 , or C_3 . Then, point "f" is connected to point "e" with a wire. How long will it take the charge on C_3 to go to 10% of it's initial value? (3pts)

$$Q(t) = Q_0 e^{-t/RC}$$
 $RC = C_3 Reg$
 $= 20nF S_1 = 0.1s$ $t = 0.23s$
 $O_1/Q_0 = Q_0 e^{-t/0.1s}$
 $I_1(0,1) = -t/0.1s$