Otto cycle

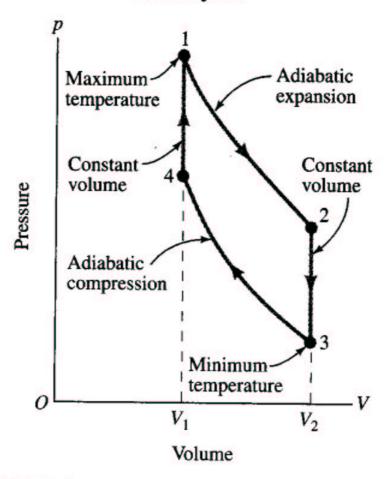


FIGURE 20AB-2 The Otto cycle, for the engine designed by Nikolaus Otto in 1876.

31. (II) The Otto cycle, represented in Figure 20AB-2, runs between minimum and maximum volumes V₁ and V₂ and minimum and maximum temperatures T₁ and T₂, respectively.
(a) Show that the efficiency is given by η = 1 - (T₂ - T₃)/(T₁ - T₄). (b) Show that if the working fluid of the cycle is an ideal gas, the efficiency of this cycle can alternatively be written as η = 1 - (V₁/V₂)^{γ-1}, where γ = C_p/C_V. The efficiency of this cycle is thus independent of the temperatures between which it operates, depending instead only on γ and on geometry. The ratio V₂/V₁ is the compression ratio. A typical compression ratio is 8, and γ = 1.4, which gives a predicted efficiency of 56 percent.