Experiment #1: "What's a Microcontroller?”

Experiment #1:
What's a
Microcontroller?

Most of us know what a computer looks like. It usually has a
keyboard, monitor, CPU (Central Processing Unit), printer, and
mouse. These types of computers, like the Mac or PC, are
primarily designed to communicate (or “interface’) with humans.

Database management, financial analysis, or even word-processing are all accomplished inside the "big box"
that contains the CPU, memory, hard drive, etc. The actual "computing’, however, takes place within the CPU.

If you think about it, the whole purpose of a monitor, keyboard, mouse, and even the printer s to “connect”

CPU:

Processing Unit.
This term specifically refers
to the integrated circuit
{contained inside the large
computer "box") that does

Central

the ‘"real computing’.
However, sometimes the
term is used (although
incorrectly) to include
everything inside the "box",
including the hard & floppy
drives, CD-ROM., power
supply & motherboard.

Microcontroller:
An integrated circuit that
contains many of the same
items that a desktop
computer has, such as CPU,
memory, etc.,, but does not
include any “human
interface” devices like a
monitor, keyboard, or
mouse. Microcontrollers are
designed for machine
control applications, rather
than human interaction.

the CPU to the outside world.

But did you know that there are computers all around us, running programs and
quietly doing calculations, not interacting with humans at all? These computers
are in your car, on the Space Shuttle, in your kid brother's toy, and maybe even
inside your hairdryer.

We call these devices “microcontrollers”. Micro because theyre small, and
controller because they “control” machines, gadgets, ~whatever.
Microcontroller's by definition then, are designed to connect to machines,
rather than people. They're cool because, you can build a machine or device,
write programs to control it and then let it work for you automatically.

There is an infinite number of applications for microcontrollers. Your
imagination is the only limiting factor!

Hundreds (if not thousands) of different variations of microcontrollers are
available. Some are programmed once and produced for specific applications,
such as controlling your microwave oven. Others are "re-programmable’, which
means they can be used over and over for different applications.
Microcontrollers are incredibly versatile - the same device may control a model
rocket, a toaster, or even your car's antilock braking system.

This experiment will introduce us to one very popular microcontroller called the
BASIC Stamp. The BASIC Stamp is a sophisticated array of circuitry, all
assembled onto a very small printed circuit board (PCB). In fact, the PCB s the
same size as many other types of “integrated circuits”. The BASIC Stamp is
shown on the following page in Figure 1.1,

“What's a Microcontroller?” Student Guide Version 1.7 < Page 7

Experiment #1: "What's a Microcontroller?”

aly
PCB:

Printed Circuit Board. Complex
electronic circuits require many
electrical ~ connections between

components. A printed circuit board Figure 1.1: BASIC Stamp |l ,
is simply a rigid piece of (usually) This is a smal! picture of the BASIC Stamp [l module. The actual
fiberglass that has many copper module is about the size of a postage stamp.

wires embedded on {or sometimes
in) it. These wires carry the signals
between individual components in
the circuit,

Writing programs for the BASIC Stamp is accomplished with a special version of the BASIC language (called
PBASIC). Most other microcontrollers require some form of programming that may be very difficult to learn.
With the BASIC Stamp, you can create simple circuits and programs in a matter of minutes (which we're about
to do!). However, do not be misled into thinking that all the BASIC Stamp can do is "simple stuff". Many
sophisticated commercial products have been created and sold, using the BASIC Stamp as a “brain”,

When we create devices that have a microcontroller acting as a "brain’, in many ways we are attempting to
mimic how our own bodies operate.

Your brain relies on certain information in order to make decisions. That information is gathered through
various senses such as, sight, hearing, touch, etc. These senses detect what we'll call the "real world”, and send
that information to your brain for "processing’. Conversely, when your brain makes a decision, it sends signals
throughout your body to do something to the “real world". Utilizing the "inputs” from your senses, and the
“outputs” from your legs, arms, hands, etc., your brain is interfaced and interacting with the real world.

Page 8 - "What's a Microcontroller?” Student Guide Version 1.7

Experiment #1: "What's a Microcontroller?”

As you're driving down the road, your eyes detect a deer running out in front of you. Your brain analyzes this
"input”, makes a decision, and then "outputs” instructions to your arms and hands, turning the steering wheel
to avoid hitting the animal. This “input / decision / output” is what microcontrollers are all about. We call this
input/output, or /0" for short.

This first lesson will introduce you to the output function of the BASIC Stamp, and each following lesson will
introduce new ideas and experiments for you to try. You will be able to use the ideas from these lessons to
invent your own applications for microcontroller programs and circuits.

Part For each experiment, you need an IBM-compatible PC running DOS
ar Sﬂ 2.0 or higher, Wing5/98/2000 or NT4.0. For Experiment #1 you will
Required need the following;

) BASIC Stamp !l module

} Board of Education

) Programming Cable

) LED's (light emitting diodes)

) 470 ohm, % watt resistors (yellow, violet, brown)

) 9 volt battery or wall transformer connected to the Board of Education
(6) Jumper wires

(1
(1
(
{2
(2
(1

Build It! Any - microcontroller (or computer) system consists of two
‘ primary components: hardware and software. The hardware is
the actual physical components of the system. The software is a
list of instructions which reside inside the hardware. We will now
create the hardware, and then write a software program (o
“control it",

In order for our microcontroller to interact with the real world, we need to assemble some "hardware”. We'll
be using a PCB called the “Board of Education”. This board was created to simplify connecting "real world
stuff' to the BASIC Stamp. Connectors are provided for power (wall transformer or 9 volt battery), the
programming cable, and the Input / Output pins of the BASIC Stamp. There is also a "prototyping area” or
tF)_readboard (the white board with all the holes in it). It is this area that we'll be building our circuitry. See
igure 1.2.

"What's a Microcontroller?” Student Guide Version 1.7 « Page 9

Experiment #1: "What's a Microcontroller?”

Figure 1.2:
Board of Education Rev. B

This is where we will build our
circuit. The socket is for the
BASIC Stamp module, and the
breadboard is for your projects.
The BASIC Stamp is oriented with
the large chip closest towards

the "AppMod Connector”

a
LED:
Light Emitting Diode. A special
type of semi-conductor diode,
which when connected to an
glectronic circuit (with a
current limiting resistor) emits
visible light. LED's use very
little power, & are ideally
suited for connecting to
devices such as the Stamp.

Rogklin, CA - US 15 14 13 12 m
9 Vde e (@
= oo
c Battery < i | B \&/
Red
E — R
N Rev B
82 S |
~ E] e~
= oooon ooooo
o EDDDD_DDDDD & £
N W ooooo[|oooog| | £ &
X | 00000 |DOoOOO
L s OOOO00| ([Dooo0 oW
= 00000l |Doooog N
W ooooo| (oooog|| Lo s
= 00000 |(ooood o~
\ooooo| |oDoooo S N
4 ooooo ooooal| K.
ooooo| |([oocooo M~
‘goooo| |ooooo N =
gooop| |ooooo a9}
ooooo) ([poooo
\oDooool joooog
. f gopnoo oooog
[Y ooooo 0oooo
® . @ :'E—‘—‘—— E ~—EI:) 1998
@ Need Tech Support? L@ www.stampsinclass.com
email: stamptech@parallaxinc.com ” {916) 624-8333
(13 4
****** —— 3.7° (94 mm)

— 4.0°(101.5mm) ————]

In this experiment we will be connecting two Light Emitting Diodes (LED's) to
the BASIC Stamp. LED's are a special form of lamp, that for various reasons,
are easily connected to microcontroller devices.

There are two very important things to remember when connecting LED's to
the BASIC Stamp. The first is always be sure that there is a resistor connected,
as shown in Figure 1.3 below. In this experiment the resistors should be rated
at 470 ohms, % watt. See Appendix C for additional information.

Secondly, be certain that the polarity of the LED is correct. There is a flat spot
on the side of the LED that should be connected as shown in Figure 1.3. If the
polarity is reversed, the LED will not work. The flat side also has the shortest
LED lead.

Page 10 » "What's a Microcontroller?” Student Guide Version 1.7

Experiment #1: "What's a Microcontroller?”

Figure 1.3: LED on Breadboard pﬁ
Shows LED and resistor "plugged" into breadboard. No P10y
connections have been made yet to the BASIC Stamp's 1/0 pins. Pe

0
jl
P2 -
0

X2

When inserting an LED into the breadboard, bend the leads at right angles a short distance from the body,
because some LEDs do not hold up well to stress on the plastic.

Understanding the Breadboard

The BASIC Stamp has a total of 24 pins, as shown in Figure 1.1. Some of these signals are used to connect the
BASIC Stamp to the PC and the 9 volt battery (or wall pack). Sixteen of these signals (PO through P15) are
available for us to connect to the “real world".

On the Board of Education, you can follow a “trace” from the BASIC Stamp module to the line sockets on the

left of the breadboard. Each BASIC Stamp 1/0 pin is brought to the edge of the breadboard, and with wires
you can “jumper” from the sockets onto the breadboard.

“What's a Microcontroller?" Student Guide Version 1.7 « Page 11

Experiment #1: "What's a Microcontroller?”

Connecting an LED:
Never connect an LED to the
Stamp, without having a
resistor {of the proper value)
in the circuit . The resistor
limits the amount of current
flow in the circuit to a safe
level, thereby protecting
both the LED and the Stamp.

Figure 1.4: Breadboard connections
The horizontal black lines show how the
"sockets” are connected underneath the
breadboard. This means you don't have to
plug two wires into one socket since the
socket to the right or left is connected.

Vdd is +5 Volts, and Vin is an unregulated
voltage from your power supply. For example
if you use a 9-voit battery Vin is + 9 Volts. Vss

is Ground.

It's important to understand how a breadboard works. The breadboard has
many metal strips which run underneath in rows. These strips connect the
sockets to each other. This makes it easy to connect components together to
build an electrical circuit.

To use the breadboard, the legs of the LED and resistor will be placed in the
sockets. These sockets are made so that they will hold the component in place.
Each hole is connected to one of the metal strips running underneath the board.
You can connect different components by plugging them into common nodes.
Figure 1.4 is a small pictorial of this concept.

Each BASIC Stamp pin has a "signal name" associated with it. For example pin #24 is VIN (which stands for
"voltage in"). This is one of the connections for the 9 volt battery. When you plug in the battery, a connection
is made from the battery to this pin via a copper wire that is embedded on the Board of Education.

The pins / signals that we will be working with for this experiment are as follows:

Pin# Signal Name
5 PO
6 P1
21 Vdd (+5 volts)

When we program the BASIC Stamp, we will refer to the Signal Name, rather than the actual pin number.

Page 12 « "What's a Microcontroller?” Student Guide Version 1.7

Experiment #1: "What's a Microcontroller?”

Schematic
An electrical diagram
showing connections
between components, but
not necessarily looking like
the physical circuit. We use
schematic diagrams, because
they help in understanding
signal flow through complex
circuits.

Figure 1.5: Schematic
Electrical diagram for

0K, lets build the circuit! Do not connect the power supply (9 volt battery or

wall transformer) yet.

Figures 1.5 and 1.6 are two different methods to show an electrical diagram.
Figure 1.5 is a "schematic” diagram of the circuit. Figure 1.6 is the same
circuit, but drawn as a pictorial to show what the circuit physicallylooks like.
In each experiment you will be shown a schematic and a pictorial until we

progress to more advanced lessons.

vdd vdd
{
4700 4700
LED LED
X ¥

circuit shown on the P
right side.

PO
Connect the first LED:

1. Plug a wire into PO and then into the breadboard as shown. Then plug a resistor into the breadboard
adjacent to the wire, and plug the other end of the resistor into the other side of the breadboard.
2. Plug the LED in the breadboard adjacent to the resistor. Make sure that the lead next to the flat side of

the LED connects to the resistor.
3. Plug the remaining lead on the LED to Vdd (+5v) on the Board of Education.

“What's a Microcontroller?” Student Guide Version 1.7 - Page 13

Figure 1.6: Pictorial
What the circuit
physically looks like
after you build it. The
flat side of the LED is
closest to the resistor.

Experiment #1: “What's a Microcontroller?”

Connect the second LED:

N

Plug a wire into the the P1 position and connect it on the breadboard. Then plug a resistor into the

breadboard adjacent to the wire, and plug the other end of the resistor into the right side of the

breadboard.

Plug the LED into the breadboard adjacent to the resistor. Make sure that the lead next to the flat side of

the LED connects to the resistor.

Program It!

rogram:
A sequence of instructions
that are executed by a
computer or microcontraller
in a specific sequence to
carry out a task. Programs
are written in different types
of ‘languages’, such as
Fortran, "C", or BASIC.

Bug:
An error in your program or
hardware. To “debug” your
program, is to track down &
eliminate errors in your
code. There may also be
hardware errors such as
reversing an LED that causes
the system not to function.

Connect the remaining lead from the LED to Vdd (+5v) of the Board of Education, using a connecting wire.

Connect the Board of Education to the PC:

1. Plug one end of the programming cable into the Board of
Education.

2. Plug the other end of the programming cable into an available
serial port connector on the PC.

That does it! We've just created a "hardware" circuit. But it doesn't do anything
yet. That's why we need to..

How many of you already know how to write a computer program? If you've
done it before, then the first part of this section may be review. But if you're
“newbie”, don't worry! It's really not that hard.

A computer program is nothing more than a list of instructions that a computer
(or in our case, a microcontroller) executes. We create a program for the
microcontroller by typing it into a PC (utilizing the keyboard & monitor), then we
send this “code” through the programming cable, to the microcontroller. This
program (or list of instructions) then runs or "executes” inside the BASIC Stamp.

If we've written the program correctly, it will do what we want it to do.
However, if we make a mistake, then the device won't work (or works poorly),
and we need to "debug it". Debugging can be one of the most hair-pulling
experiences in the entire process, therefore, the more careful you are in
creating the program, theoretically the easier it'll be to debug. A software "bug”
is an error in your program. Therefore, debugging is the art of "bug” removall

Page 14 « "What's a Microcontroller?” Student Guide Version 1.7

Experiment #1: "What's a Microcontroller?”

PBASIC for the BASIC Stamp has a bunch of commands to choose from; 36 to be exact. A complete listing and
description on each of these commands can be obtained from the Basic Stamp Manual Version 1.9, but each
command used in these lessons is further described in Appendix E, PBASIC Quick Reference.

For the purposes of this experiment we're going to look at only four commands.
These are: oyTpuT, PAUSE, GOTO, and out.

As mentioned above, a program is a list of instructions that are executed in a sequence determined by the
structure of the program itself. Therefore, as we write a program, it is very important to keep in mind the
sequence of execution that we desire.

For example, if we want to buy a soda from a vending machine, our brain executes a list of commands to
accomplish this. Perhaps something like...

insert $1.00 into slot.

Wait for green light to come on.
Push button for soda type.
Watch soda fall into tray.

Pick up soda from tray.

Open soda.

Drink soda.

Burp.

OO W =

Now, that seems pretty straightforward, but only because we've done it before.
If however, your brain was sending out the following "program”:

Push button for soda type.
Open soda.

Insert $1.00 into slot.

Pick up soda from tray.

Burp

Drink soda.

Wait for green light to come on.
Watch soda fall into tray.

O~ OO W

"What's a Microcontrolier?” Student Guide Yersion 1.7 < Page 15

Experiment #1: "What's a Microcontroller?”

Not much would happen. All the proper commands are there, but they're in the wrong order. Once you've
pushed the button for “soda type” (step #1), your brain (program) would "hang" or stall because it can't
execute "open soda”, because there's no soda to open!

This is a "bug". We humans can modify our brain “program” as the situation is happening, and we can of course
ultimately figure out how to get that soda.

Microcontrollers, however, don't have the capacity to "adapt” and modify their own set of instructions ~
they're only able to execute the exact sequence of instructions that we give them.

Ok, enough background, let's program this microcontrolier to do something!

Connect the 9 volt battery or wall pack to the Board of Education. Connect the serial cable to your PC. Plug
the BASIC Stamp Il into the Board of Education, with the big chip towards the bottom of the board.

Turn on your PC. BASIC Stamp software runs in DOS and Windows 95/98/NT4.0. We'll assume that you're using
a computer with Windows 95. You first need to copy the contents of the disk onto your PC desktop, or into a
folder.

Doubie click on the BASIC Stamp icon.

’.‘ B

Download: You should now be running a program called the "Stamp Editor”. This is a
Ater a microcontroller | program that was created to help you write and download programs to the
program has been created | BASIC Stamp microcontroller. The screen will look something like Figure 1.7:
onthe PC, it is sent from the
PC down a cable, & loadea
into the micro-controller's
memory. The program s
then executed from within
the Stamp.

Figure 1.7: BASIC
Stamp Software
Double-click on the
BASIC Stamp icon to
run the software. The
opening screen will
look like this.

Fumameae e

Page 16 « "What's a Microcontroller?” Student Guide Version 1.7

Experiment #1: "What's a Microcontroiler?”

The screen, except for a few words across the top, is blank. This is where you will create your programs. Now
remember, we are going to write our program utilizing the “human interface” equipment {monitor, keyboard,
etc) that is part of your PC. The program that we will write will not run on the PC, but rather will be
“downloaded” or sent to the microcontroller. Once the program has been received, the BASIC Stamp will
execute the instructions exactly as we've created them.

Type the following program into the BASIC Stamp editor so it looks like Figure 1.8:

Figure 1.8:
BASIC Stamp Software W=
Type the code into the editor so e 0
it looks like this screen, wa=t
| s JOUKE
s redsnk |

Now while holding the "ALT" key down, type the letter “R" (for “run’) and then press "ENTER" when the menu
shows the RUN command. If everything went well, the LED that is connected to PO (pin #5 on the Board of

Education) should be blinking on and off. The second LED won't blink yet because we have not written any
code to control it.

"What's a Microcontrolier?” Student Guide Version 1.7 « Page 17

Experiment #1: "What's a Microcontroller?”

=

The Stamp Editor:
If you are using the DOS
version, pressing the "F1" key
will first show you how many
variables you have used.
Pressing the spacebar moves
between (1) variable, {2) overall
program memory, and (3)

If you get a message that says, "Hardware not found", re-check the cable
connections between the PC and Board of Education, & also make sure that
a power supply is connected to the Board of Education. If it still does not
work, check under the EDIT menu, PREFERENCES option, and EDITOR
OPERATION tab. The default COM port setting should be AUTO.

Try downloading again (hold down the ALT key, & then press "). If it still
doesn't work, you may have a bug! Re-check your program to be certain
you've typed it correctly.

detailed program memory. To
find out how big your program
is, simply hold down the ALT
key & press "m”.

If after trying this, you're still having problems, ask you instructor for help.

Now lets dissect, and look at our program:

The first command used is output. Each signal (PO & P15) can be setup as an "input” or an "output”. Since we
want the microcontroller to "turn on and off" an LED, the microcontroller is manipulating the "real world".
Therefore, by definition, we want PO to be an "output”.

Result of the first command: output o makes PO an output. (Hint: If we had wanted to make P1 an output,
the command would have been "output 1%).

The next item in the program reblink:, isn't really a command. It's just a label, or a marker for a certain
point in the program. We'll get back to this in a moment.

Pin #5 on the BASIC Stamp is PO as we call it, and is an output. In the world of computers, voltages on these
pins can be either "high” or “low", meaning a high voltage or a low voltage. Another way to refer to high & low
is"1 &0". "1" being high and "0" being low.

Think of a light switch on the wall, when the switch is in one position the lamp
is on, & when it is in the other position, the lamp is off. It's binary — there are

Out:

Technically speaking, "Out”
isn't really a command, it's a
"register”. We use the “out
register” to make an output
gither high or low. Ina future
experiment, we'll explore
registers in greater detail.

only two possible combinations, on or off, "1" or "0". No matter how hard you
try, you can never put the light switch "in between” on and off positions.

If we want to turn the LED on, we need to cause PO to go low (or become a 0).
PO is acting as a switch that can be “flipped” on or off, under program control!
Simplified circuits are shown in Figure 9 (LED off) and Figure 10 (LED on).
Current flow is from +voltage through the resistor, LED, and into PO, where PO
is "connected " to ground.

Page 18 = "What's a Microcontroller?” Student Guide Version 1.7

Experiment #1: "What's a Microcontroller?”

Figure 1.9: LED off Figure 1.70: LED on
When PO is “high" there is no current flow When PO is "low" and current flows, the LED is on.
TX g P PWR TX o R PWR
RX o 0 GND RX o A GND
ATN § +5V b RES ATN g +5Y H RES

GNDd 5V GNDg 5V
_Eé%ﬁi ?%TB“W “;H \ ﬁgﬁ“\

5 P14 5 P14
pa g GNP hopgg P2 o GND bopyg
P3 o b P12 P3 o B P12
P4 o B Pt P4 o 5 Pt
P5 5 P10 P5 o 5 P10
P6 d b Pg P6 o 5 Pg
P7 4 P P8 P7 4o B P8

Sy

This is the purpose for the second command: “outo=0". This will cause PO to go "low’", which causes the LED to
turn on.

Keep in mind that microcontrollers execute their programs very quickly. In fact, the BASIC Stamp will execute
about 4000 instructions per second.

If we were to turn the LED off with the next command, it would happen too quickly for us to see. Therefore,
we need to “slow" the program down, so that we can see whether or not it's operating properly.

That's the purpose of the next command: "pause 1000". This command causes the program to wait for 1000
milliseconds, or 1 second.

The next command is "outo=1". This command causes the PO to go high, and turn the LED "off" because there
is no current flow.

Next we "pause 1000" (for another second). The LED is still "off".
"Goto" is pretty much self-explanatory. During the course of program execution, when the "goto’ command is

encountered, the program "goes to" some other point in the program. In our example, we tell the program to
"goto reblink’. Wherever reb1ink appears, the program will “jump to"

"What's a Microcontroller?” Student Guide Version 1.7 « Page 19

Experiment #1: “What's a Microcontroller?”

In our program, the label reb1ink is on the second line. Therefore when the instruction goto reblink IS
reached, the program jumps back to the second line, and “loops" or does it again. (Hint: The program loops
over and over each time it encounters the goto reblink command. This is what causes the LED'S to
continuously flash on and off).

A good habit to establish is to remaxk your programs. Remarking or documenting your programs makes them
easier to follow and debug if there’s a problem.

The apostrophe () is used to tell the microcontroller to “disregard the following information”, it's only for
human benefit. In other words, anything in a program line written after an
apostrophe is not part of the instruction “code”.

'So, our program could be "remarked” like this:

“Remarks" in your program
are not executed like
commands. They are
ignored by the micro-
controller. The purpose of a
remark is to allow us humans
to more easily understand
what the commands in the
program are doing.

The program will still operate exactly the same way, the "remarks’ after the
apostrophes are only for our benefit in understanding what we've created.

Note that throughout this experiment we have used the pause command to wait for x milliseconds. Keep in
mind that instructions also require execution time. For example, the setup time for Low, high, and pause
commands are about 0.15 milliseconds each. On average the BASIC Stamp executes 4,000 instructions per
second.

Page 20 "What's a Microcontroller?” Student Guide Version 1.7

Experiment #1: "What's a Microcontroller?”

A Simpler Way

Remember that each of the pins on the Stamp (P0-P15) can be configured as an input or an output. In order to make the pin an
output, we use the command: output. Once the pin is an output, we can make it go "low" (a logic level 0) or "high” (a logic level
1), with the ouTo=0 statement (for low) or ouTo=1 (for high). Using these commands, it takes two lines in our program to make
the pin an output & then make it go high or low.

PBASIC has made it even simpler to do this. If you wish to make PO an output and high (at the same time), simply use the
command: high 0; and conversely, to make PO an output and low (at the same time) use: Low 0.

Our example program now would look fike this:

The program functions exactly the same, it's just that the new commands not only cause the pin to go high or low (like "out0=0"
and "out1=1") but they also cause the pin to become an output. in simple cases (like this program), either method will suffice, but
in more complicated programming, one method may be more appropriate than the other. We'll explore this in a future lesson.

“What's a Microcontroller?” Student Guide Version 1.7 « Page 21

Experiment #1: "What's a Microcontroller?”

Questions

1. How does a microcontroller differ from a computer?
2. What is the difference between hardware & software?
3. Whyis a microcontroller like your brain?

4. What does "debug” mean?

5. The following program should turn on the LED on PO for 2 seconds, then off for 2 seconds, & then repeat.
How many "bugs” are in the program, & what corrections are needed?

Page 22 - "What's a Microcontroller?” Student Guide Version 1.7

Using Y our Basic Stamp to read out a Geiger Tube

In this part of the lab, we are going to use athe Basic Stamp as a data acquisition system
for a Geiger counter.

Y ou need:

1) Board of Education with Basic Stamp 2
2) A power supply (or 9V Battery)

3) The interface cable to the computer (a DB9 seria cable)
4) Compter running DOS (need a serial port!)
5) A CD4040BE Ripple Carry Binary Counter (Thisisa Chip)
6) Model 528 Eberline Geiger counter and
7) The specia connector cable
8) The Geiger Tube program disk (may already bein your computer)
9) Some jumpers for making connections
10) An amplifier in aclear plastic box (just an OP AMP really)
11) A few resistorsand LED’s

12) A radioactive source (ask your instructor)

Procedure

Set up the stamp as you did in the first part of the "What is aMicrocontroller" Lab but
leave the breadboard bare.

{

ﬁ
N .
g B E mmE gl g N

Now, put the CD4040BE on the Breadboard

3d0v0vrdd

BN BN BN B BN BE BN BE BN R |
Wl Rl i

Make the following connections:

Chip
- "(CD404OBE\- -
| or \—/Vdd] _
| o5 o1l]| M
B s O owlllm
[o g Q|| W
s B o=
W o3 Reset | || M
_ MY el]| m
m [|vs Qlj |
H R 4 B
H N H N

Theideaisthat we are going to

pulse the 1

line up and down.

Chip Board of Education
Vdd Vdd
Vss Vss
Reset PO
,,,,,,,,, o1 | PL
Q1 P4
Q2 P5
Q3 P6
,,,,,,,,, Q4 | P7T
Q5 P8
Q6 P9
Q7 P10
,,,,,,,,, Q8 | P
Q9 P12
Q10 P13
Q11 P14
Q12 P15

The CD4040 outputs a binary number that is supposed to be the number of times
the @1 pin was pulsed.

We are going to use this feature to count pulses from a Geiger tube, but first we need
to check and make sure everything was hooked up correctly. We are going to do this
by pulsing PO enough times to check each binary output. Q1 corresponds to the O bit.

In case you’' ve never been exposed to binary numbers, they work like thisfor the

CD4040 (and lots of other things too)
(In the table below, 1 meansthe pinis"high" or about +4V,

0 meansthe pinis"low" or about OV)

4 M

Ql2.............. Q1| Number of Counts - N
000000000001 1 Qla............... Q1| Number of Counts
000000000010 2 100000000000 2043
000000000011 3 110000000000 3072
000000000100 4 111000000000 3584
000000000101 5 101000000000 2560
000000000110 6 111111111111 4095

| 000000000111 7 | 000000000000 0

J

A number isthe sum of 2's, raised to the power of the bit position. Y ou can actually

watch this happening.

#oounts = 2048* Q12+1024* Q11+512* Q10+256* Q9+128* Q8+64* Q7+32* Q6+16* Q5+8+ Q4+4* Q3+2* Q2+Q1

Once you have the chip hooked up, load and run the program: geigerte.bs2

The program is set up to pulse 128 times, read the binary output, and then form
aword from the binary data. Y ou can put different numbers into the program

to test different pins. |.e. you could try 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
and 2048. Thiswould let you know if you mixed up any pins.

Question: How many counts do you read if you pulse 4096 times? Why?

Y ou can set the number of pulses very high and watch the operation of the counter
with a data probe. Y ou may need to vary the amount of time you pause between
the high and low pin settings so you can hear or see individual pulses.

Hooking up the data probe: Touch the point to the data pin to test

m

High

Vdd RED

Vss Low

BLACK

pulse

Ok, now move the probe from Q1 - Q12. What CMOs

did you notice about the rate of pulsing? See how
the different bits work?

If you are convinced that your counter is working, you can start to connect the

Geiger Counter. Lets make sure the Geiger counter isworking, at some level.

1) Check the battery by turning knob to BATT

2) OK? Turn knob so that X1 is selected

3) Have your instructor bring you a source. Co60 will be a good choice.

4) Bring counter close to source. Meter should raise alittle. Y ou don’'t need
more than 2000/min. (Note: you may need to press RESET first)

5) Hook up the geiger counter to the Data Probe using these connections:

Geiger Amplifier Board of Education | Dataprobe
Shielded
PhONe - o | catle Pho”,?]put Vdd <——— RED
Input to _
RED —= Probetip
Counter
BLACK — + = Vss~ | BLACK

Repeat step 4, did you get pulses in the data probe?

Now, remove the connection from P1 to the CD4040 (we don’t need to pulse artificially now) and
hook up the Geieger counter "Input” to the@1pin. Place the source close to the Geiger tube and
look at Q1 with the data probe. Getting any action? Y ou may want to check your connections, or
you may need to hook up a circuit to help the geiger counter trigger the CD4040. A suggestion is
shown below (you may want to have your instructor check your set up before you try this, and
you may wait 20 sec. or so and look again.)

" Conditioning " the input thisw
gives the CD4040 chip a better
chance of recognizing aHigh
level and aLow level. The
resistor are sets adefinite
low level, and the Geiger
counter will pulse thepl
pin High. Y ou may not need this though.

I nput @

| 4700 ohm

Now that the Geiger counter isworking, leave the source in place and load the program:
geigerme.bs?2 Runit. It isset up to take 12 readings of 10 seconds Iengths each. If you
add up these readings and divide by 2 you should roughly duplicate the meter reading on
the geiger counter.

Y ou are ready to procede with some physics measurements if your counter set up checked
out ok. You may find it convenient to modify the geigerme.bs2 program to make your data
taking easier. Before you modify this program though, copy it to afile you won't destroy, like
mygeig.bs2.

Proceed to the following experiments.

Do experiment 2.6 first. If you have time, graph your results. If the results make sense then:
Hint: Set up your program to do this part automatically. You will still have to graph the results.

Do the supplement next. Be sure you don’t change the geometry between the source and the
Detector once you' ve started. Y ou also may have to throw away your first data point.

Note on program structure:
Most of the programsin the lab had this kind of structure:
Top: Let the computer know what variables you need

Middle: Operate on variables
Bottom: Data output

Experiment 2.6 (Supplement)
Counting Statistics

Your job inthislab isto seeif your set up behaves
the way you expect for aradioactive decay. The
number of decays you observe in a given amount
of time, for a given radioactive source and detector
should follow aknown statistical behavior. Lets say
you were going to measure the number of decays
from a Co60 source for a minute, and you did this
20 times. Each minute you wrote down the number
of decaysthat occured in that minute. Y ou don’t
expect the numbers to be exactly equal, but you
do expect them to fall within some reasonable
interval of counts. Statistically speaking, you'd
expect the number of counts to follow abell shaped
curve (a Gaussian curve) if you got, on average,
about 20 or more counts in aminute. In fact, if you
define your Gaussian thisway: (X is each number
you wrote down)

(X-Xavg) >2

Number of trials e‘0-5< o

210

Y ou expect to see adistribution that looks like:

you got X

Number of times

X

If you took lots of data and made a graph of the
number of times X was a certain number, you' d
expect to see acurve like the one above. You'd
al so expect that:

n
Z Xi n=# of trials
i=1 Xi = number of counts
Xavg = inasingletria
n
and
n
_ 2
Z (Xi - Xavg)
o = i=1

Number of times

Now, what is pretty cool about counting statistics is that

o should be pretty closeto Xavg

for large n, and Xavg of around 20 or higher, and your detector
worked, etc.

Now, in the write up from the Ortec Corporation for this lab,
the definitions of the variablesthey use are alittle challenging.

When they say R as arate, what they really mean isthat R
isthe number of countsin a SET interval. For instance, if you
took 320 counts in one minute, R=320 and NOT 5.3/sec. The
ideaisthat you keep the amount of time you look constant,
and use the number of countsin that constant, set, time as R.

(Xi-Xavg)

o the units on the bottom

In the histogram of

should actually be dimensionless.

B
>.< e}
Z
5
o) .
3 3210123
>
(Xi-Xavg)
(6]

What you are doing is seeing if your estimate of the ¢ is
reasonable for your data. Y ou should see a Gaussian
distribution of width 1. Sometimes thisis called aNormal

distribution.

EXPERIMENT 2.6
Counting Statistics

Purpose

As is well known, each measurement made for a radioactive
sample is independent of all previous measurements, be-
cause radioactive decay is a random process. However, fora
large number of individual measurements the deviation of
the individual count rates from what might be termed the
“average count rate” behaves in a predictable manner. Small
deviations from the average are much more likely than iarge
deviations. In this experiment we will see that the frequency
of occurrence of a particular deviation from this average,
within a given size interval, can be determined with a certain
degree of confidence. Fifty independent measurements will
be made, and some rather simple statistical treatments of
the data will be performed.

The average count rate for N independent measurements is
given by

, _ Ry+Ry+Ryt - Ry
A= 1 2 . (12)

where R, = the count rate for the first measurement, etc., and
N = the number of measurements.

In summation, notation R would take the form

i=N
A
1

(13)

F-ll

N

The deviation of an individual count from the mean is (R —
R). From the definition of R it is clear that

=N
(R; — &) = 0. (14)

i=1

The standard deviation ¢ = \/ﬁ_

Procedure

1. Set the operating voltage of the Geiger counter at its
proper value.

2. Place the “°Co source far enough away from the window
of the GM tube so that #8898 counts can be obtained in a
time period of 0.5 min. ¢ =100

. . eVl .
3. Without moving the source, take 88 independent 0.5-min
runs, and record the values in Table 2.2. (Note that you will
have to extend Table 2.2; we have shown only ten entries.)

The counter values, R, may be recorded directly in the table
since for this experiment R is defined as the number of
counts recorded for a 0.5-min time interval.

4. With a calculator determine R from Eq. (12). Fill in the
values of R — R in Table 2.2. It should be noted that these
values can be either positive or negative. You should indicate
the sign in the data entered in the table.

Table 2.2°

_ (R~ Rllo (R — R)/o (Rnd'd Off)

Run R a R—AR
Typical | Measured|| Typical Measured

1 —~0.15 0
2 + 1.06 +1.0
3 +0.07 ‘ 0
4 — 1.61 -1.5
5 —1.21 —1.0
6 + 1.70 +1.5
7 —0.03 0
8 - 1.17 -1.0
9 — 1.67 ~1.5
10 +0.19 0

*Typical values of (R — R}/o and (R — R)/o rounded off; listed for illustrative
purposes only.

EXERCISES

a. Calculate g, and fill in the values forsand (R-7ﬁ)/oimhe
table, using only two decimal places. Round off the values for
(R — R)/o to the nearest 0.5 and record these values in the
table. Note that in Table 2.2 we have shown some typical
values of (R — R)/o and the rounded-off values.

b. Make a plot of the frequency of the rounded-off evem.s
(R — R)/o vs the rounded-off values. Figure 2.3 shows this
plot for an ideal case.

Note that at zero there are eight events, etc. This means that
in our complete rounded-off data in Table 2.2 there were
eight zeros. Likewise, there were seven values of +0.5, etc.
Does your plot follow a normal distribution similar {o that
in Fig. 2.3?

10 l [I {

\, PROBABLE ERROR

STANDARD
DEVIATION

4 p o FWHM
{Full Width at Half
Maximum)

Frequency of Rounded-Off Events

8147

N 1 z |

—20 —0 o +0 +20

Fig. 2.3. Typlcal Plot of Frequency of Rounded-Otf Events ve
the Rounded-Off Values.

Experiment 2.6 (Supplement)
Bad things happenin2’s 2121?

Your job in this part of the lab isto verify one of the
more bizarre consequences of the random nature of
both noise and radioactive decays.

Consider a process such as particle decay where:

1) Inasmall interval of time, dt, thereisat most a
single decay

2) The probability of finding adecay in thisinterval
of timeis proportional to dt

3) A decay in dt isindependent of decays at other
times

The probability then of finding adecay in thetime
dtisPi(dt)=Mdt (M isaconstant)

And the probability of not finding a decay in thetime
dt is Pj(dt)=1-Pi(dt) = 1-Mdt

If we keep in mind that the decays are independent
the probability to get no decaysin along time, t+dt,
can be expressed Pj(t+dt) = Fj(t)Pj(dt) or, combined
with the above, one can form the quantity
Py (t+dt)-F (1) = -MPj(t)
dt

or Fi(t) = Fi(0)eM!

-Mt
since Fj(0) =1, Pj(t) =e ...S0 what?

Well, lets combine some probabilities. Figure the probability

that you have no decay intimet, and one decay indt is:

Pi(OPi(dt)=EeMt Mdt)

And the probability/(unit length) becomes Me -Mt

Thisis how the time between events should be distributed
in arandom process. Y ou are going to verify this.

Procedure: Once you have finished with the counting
statistics portion of the lab, load the program geigeran.bs2

This program loops 65000 times (about 2.5msec/loop)
and checksto seeif the counter hasincremented. If
s0, you will get the number of loops since the last
geiger tube hit. (Y ou may need to put a4700 Ohm
resistor on the input to stop multiple hits)

Write down each number. Probably you need 250 or
so pointsto do agood job. Make sure that the rate
in the counter is not too high (afew/second isfine).

Y ou can aso do different rates as a check. If you
completely remove the source, you can measure
the background to seeif it is random.

Does your data confirm the relationship Me Mt 5
What is M for your data? What is the average
time between events for your data?

Challenge: Can you get the computer to write the
datato afilefor you to anayze later?

Noteon N eventsintimet:

It isinteresting to consider what happensin over a
long time scale where there is more than one decay.
The probahility for finding N decaysin alength of
time t+dt will be made up of the probability of finding
N decaysint + 0 eventsin dt and N-1 decaysint
and 1 event in dt [remember 1) from above].
Pn(t+dt) = Pn(t)Pj(dt) + Pn-1(t)Pi(dt)
= Pn(t)(1-Mdt) + Pn-1(t)(Mdkt)

or
Pn(t+dt) - Pn(t) = -MPn(t) + MPn-1(t)

dt

Which has a solution (which | looked up):

N -Mt Infinity
N!

' N=0
Consider » adpn(t) =e MEMt 5 pay
_ o AMtMt

Now a derivative with respect to awhile you
let agoto 1 givesyou the average value of N,
and by similar means, you can compute the
standard deviation on N (whichis |/ N).

