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Introduction

The run has completed and the pertinent data from the run has been assembled in the
accompanying plots and in a computer file. The instructions for the eyeball fit method
using the plot provided should give you some feel for the process of obtaining a value for
the lifetime from the data and serve as an introduction to the improved method outlined
below. The improved method involves a least squares fit. Since some students are familiar
with least squares only as a “black-box” option on spread sheets, a brief introduction
to least squares is provided as an appendix. You are cautioned that many least squares
procedures use unweighted data. The errors on the data points obtained in this experiment
are the square root of the number of hits in the bin and hence vary a great deal: it is just
plain wrong to use unweighted fitting for these data.

The data file is a simple ascii (text) file with the (Raw) data you took. Each number
is the time read from the scope after the trigger initiated a readout. To perform the fit to
the data, proceed as follows:

1 Make a copy of your data file (just to be safe)
9 Stop your data acquisition (Do NOT NOT NOT start again!)
3 Print out a copy of the histogram (plot) of the data

Do this by clicking on the left uppermost rectangle in the plot window and choosing
“Plot”. You can change the scale by modifying the “Properties” (same menu bar) before
you print it out.

4 Start the “Muoan” program by double clicking on it.

5 Double click on “Read Data From File”

6 Choose your data file (you can shrink this box now)

7 Choose a Background Level, enter it in “Background Level or B”

This background level is the number of events in each bin (see Appendix B for a
discussion on how the histogram and the fit variables are formed) you think come from
random sources. The easiest way to determine this is to look at the very long lifetimes in
the plot you printed out in “3” above. (Appendix C has a more accurate method.)
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The calculation is a linear least squares fit to the natural log of the counts per bin (after
background subtraction). This fit minimizes the sum, over the bins used, of the square of
the difference between fit prediction and the log of the observed number of events divided

by the error on the log of the observed number of events. Development of the linear least

square formulas is shown in most elementary statistics books and in Appendix A. Straight
forward application of the usual derivative procedure for propagation of error shows that
the error on the log of the number of events is simply the reciprocal of the square root of

the number of events.

Here are the formulas calculated in “MUOAN” and what they mean:

Form A - The bin centers
Form B - The level of “Noise” or Background

Form C - the bin contents (useful for the error too).
Form D — natural log of (C-B). (This is what is plotted as a check.)
(note: D is programmed to have a minimum bin content of 1)

Form E - contents of C * contents of D.
Form F — A*C

Form G — A*C*D or better A*E

Form H - A*A*C or better A*F

C — The sum of the “Form C” elements
E — The sum of the “Form E” elements
F — The sum of the “Form F” elements
G ~ The sum of the “Form G” elements
H — The sum of the “Form H” elements

NOTE: If you see a lot of “1” bins in the histogram of your modified data, you should
rethink the value you used in the “Maximum Time to accept” box (see Appendix B).

The variables created by the program are the coefficients for a pair of equations for

the least squares estimate of the vertical intercept (of the log) and the slope of the fit.

a notation where the capital letters stand for the variable name in the program:

E=Cb+ Fm

or, in matrix notation:
EN _ (C
G) \F

with the solution

and G =

Fb + Hm

In
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(n)=(F %) (&)

where the inverse matrix is

(H —F
c F\ (-F c)
<F H> “det<c F>
‘ F H

orm = (CG-EF)/(CH-FF). Solving these equations for m and taking its negative reciprocal
gives the estimate of the muon lifetime in nanoseconds. Using the matrix inversion method
is helpful in calculating the errors. The statistical error on the slope, m, is the square root
of the 2 2 element of the inverted matrix, C/(CH-FF). The lifetime is the reciprocal of m
and the error on the reciprocal is the error divided by the square of the value.

You should determine how sensitive your calculation is to the limits you chose for the
maximum and minimum lifetime. Be careful how you choose your values, the program is
not sophisticated enough to know that you want each bin to be the same. In other words,
make choices in which

(M agimum — Minimum)/(Step)

is a whole number.

Your errors may be slightly smaller than those from the more complicated fit to back-
ground along with slope and intercept. That method takes uncertainty in the background
into account. You should vary the amount of background which you subtract and see
how much that changes your answer and then increase your error to account for this ad-
ditional uncertainty. See Appendix C for a method to estimate a background level and a
background level error.

Only if there is time do this part. There is a utility you can use to check your fit. The
utility, called “muogen”, will generate a fake data set with the input parameters that you
designate. A file will be output that you can read in with the fitting routine. By doing
this activity 20 times or so, you can plot the results of the fit to the 20 fake data sets and
see if the errors returned by the fit are reasonable. High energy physicists call this the
“monte carlo” method (because you are rolling the dice). An explanation of the procedure
can be found in Appendix D.

Question: Do we need time dilation? ‘
a) If there were no time dilation, how far would a muon moving at very nearly the speed
of light go in one lifetime?
b) Airplanes sometimes fly as high as 30,000 feet above sea level. How many of the lifetimes
you calculated in a) is 30,000 feet?
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¢) If the flux at sea level is 50 mrem/year, what is the flux at 30,000 £t7

d) The (short term) radiation dose which kills half the people exposed is 500 rem. How
long would an airplane have to remain at 30,000 feet to expose the passengers to the half
lethal dose if the flux were as calculated in ¢)?
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Appendix A, Weighted Least Square fit

Suppose we have a variable y, which we expect to be linearly related to a second
variable, x. That is we expect v = ¢ + cox. Further suppose that we can measure yj with
an error o; for a setting of x; (which has negligible error), and that we have done this
measurement for n values of i, i=1,n. In this lifetime application, y; is the log of the events
in bin i (after background subtraction), oj is the error on y; which is the square root of
the number of events in the bin before background subtraction, and x; is the time at the
midpoint of bin i. Figure Al is a plot of 5 data points with errors and of the line with
c1 = 1.5 and ¢g = 0.3. The line shown is obviously a bad fit to the data and the goal is to
choose values of ¢; and ¢y which give the best possible fit. The residual, ri, is the distance
(vertically) from the data point to the line and the probability that the measurement misses
the line by this much is related to r;/o;. The definition of a least squares fit is the choice of
¢ and ¢y which minimizes the sum of the squares of rj/oj. The squares are used because
they are related to the likelihood of a fluctuation, just as it is squares which occur in the
exponent of a Gaussian distribution. While a linear fit with only two unknown coefficients
is the theoretically expected form for the curve in the lifetime example, the method 1is
easily generalized to the case of the m coefficients of a polynomial of degree m-1.
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The polynomial can be written:

m
y == ECJ inl
j=1

and the sum of the squares of the residuals over the errors is

‘ n m i1\ 2
R — <Y1 - Zj:l ¢ X‘i )

0i

Note that the i index runs over the (x;,y;) data points and that the j index runs over the
coefficients and power of x for evaluation of the polynomial at the i data point. The least
squares fit is the choice of the m coefficients, ¢;j, which minimizes R. These coefficients are
found by taking the derivative of R with respect to each of the ¢’s in turn and setting the
derivative to zero. This gives m linear equations for the m unknowns and is readily solved
by the method of determinants. We will formulate the solution in matrix notation because
that method also yields an estimate of the error on each of the coefficients. After a modest
rearrangement and reversing the order of the summations, the equation for the derivative
with respect to ¢ becomes:

k=1 +k—2
E%ZZ(E}%? )Cj k=1,m

i 1 j i 1

or S = MC where S, M, and C are the matrices:

D yizd » @ N 5 2
i oo? i gt lcrf : i oo? C1
it Vi x o e 2
S = Lol M = o io iez | C=| .
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Q

Multiplying on the left by M1 gives
M™IS=MT7MC=C or C=M'S

In order to show how to calculate the inverse matrix, it is helpful to define Mj;, the ij minor
of the matrix M as the matrix (of order m-1) which is obtained by deleting the ith row
and the jth column of M. With this definition, the elements of M~ are

—1iH 1 det (I\/I;j )
det(M)

(m™ 1)y =

The minor of a second order matrix is simply the diagonally opposite element, so this in-
version is particularly simple for second order matrices and the results are shown explicitly

6
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in the body of the writeup. The use of matrices as shown here is treated in linear algebra
courses and you should consider taking such a course if you have not done so already.

If the problem of determining the best polynomial is formulated as a maximumn likeli-
hood problem, the same function, R, is minimized and the significance of the inverse matrix
becomes clear: The diagonal elements of the inverse matrix are the squares of the errors
of the calculated coefficients and the off-diagonal elements are the correlation coefficients
of the errors. For this lab we are concerned only with the error on the slope which is the
square root of the 2-2 element of the inverted matrix. The error on the lifetime, which
is the negative of the reciprocal of the slope, is calculated from the usual formula for the
propagation of small errors:

dy
or
01/m 1
Olifetime — I = )

where m is the fitted slope.



Appendix B: The Muoan Program
The MUOAN program is a lot like the program you used to take data in the first part of this lab.

Take a look at the structure:

Step 1: Read in the data, form the data into a histogram.

CLICK HERE TO BEGIN ANALYZING DATA

[

Read Data From Fﬂh
T

Make Data an Array &

@\/hnimum Time to acceptl

[Maximum Time to acceptl

Put Data into bins

(Size of each bin@/

number of events we read in.

Then, we use a function that organizes the data into bins according to our
specifications. For instance, in the program, we ask the function to organize

the data in bins that are 100ns wide and go from 0.4 micro-seconds to

10 microseconds. This should give us 9.6/0.1 = 96 bins. Now we have an array
that tells us how many of our data points fell between 400ns and 500ns, 500ns
and 600ns,...., 9.9micro-seconds and 10.0 micro-seconds, you get the idea.

The output from this function is Number of Data Points in a Bin and Bin number.

Example:

After we read in the data (you can double click on that box to change the name)
we form the data into an array of results (really a vector) that is as long as the

Data Bin data from 0.5u to 10.5u in 5u bins

0.2u

0.9u 3 array members in bin 1 (0.9, 1.1 and 2.3)

19.0u

] Au 2 array members in bin 2 (8.4 and 6.4)

2.3u

6.4u
1.1u

If you were to look at the bin data by connecting a window to the output of the

"Put the data into bins" box, you'd see:

To do this, click on Display > AlphalNumeric,

Then place the window at a convenient spot, and
click on the data output pin of "Put the data into bins"
and connect the little wire you got to the input pin of
the AlphaNumeric box and run your program.

(Next Step: Convert the bin number to time.)

BEE

00:3
01:2




Step 2: Convert bin centers to time.

The next step is to create a usable x coordinate. Right now our Y coordinate is how often the
data fell into a particular bin of our histogram.
HISTOGRAM

To make the x coordinate, we are

going to assume that the bin center

is a good approximation for the

average X (in our case the time) v
for the data in a bin.

Bin

Number of entries in an X interval

e

X interval units

Put Data into bins

(g Make Bin Centers Time§ g W

Make Bin Center Values, Units|
(Basically, we add 0.5 to the bin number) ake bin Lenier vaiies, Ll }

Size of each bin So, the center of each bin is going to be:

X(1) = (Bin #i + 0.5)*Size + Minimum time
and
Y (i) = Number of data pints in Bin #1

Minimum time to accept §

Step 3: Calculate!

We are trying to perform the least squares fit to the data. We presume that we can fit
the data to a straight line if we can just get rid of that "noise" that appears at the high
end of the histogram you made when you took data.

Lifetime data Bin = Raw Data Bin - Noise in Bin and

In(lifetime bins) vs. X(lifetime) is a straight line (we hope)

The rest of the program is forming the variables you need for the calculations
described in Appendix A, and demonstrated in the text as a set of equations to solve.



Appendix C: Determining the Background from your Data
From the plot on the bottom of page 1, you see that there is a flat spot at high lifetimes where
the exponential has died off and we are left with what we think is random contaminations from
cosmic rays that arrive at uncorrelated times. Rather than just draw a line through these points
and guess how much is reasonable for that line to vary, we can use the data when we read it into
““Muoan’’. Basically, we will sum over bins of the raw data in a range that we think is flat and
find the average value of the number of events in a single bin. It is important in this process to
maintain the same bin width that you used in your original calculation of the lifetime.

Average Background in a bin = Sum of all the events in the flat region of the histogram

Number of bins you chose to be in the flat part

And the error on the sum is the square root of the sum, so the error on the Average
Background 1s

W Sum of all the events in the flat region of the histogram

Number of bins you chose to be in the flat part

We just need to calculate this. You have most of the components already. You are going to
construct another histogram with different limits than you used before and perform some
mathematical operations on the contents.

1)Save a copy of the ‘‘muoan’” program (use Save As in the Edit menu) as muoan?2
2)Modify muoan2. Copy and paste these windows into a clear area of the Main window:

Minimum Time to accept

Form A Form F

Maximum Time to accept Put the data into hins

Form A Form F

Size of each bin

Then click on the Display menu and choose Alphanumeric. When you click again, this box
will be placed in the Main window where you clicked. Get 2 of these.

AlphaNumeric AlphaNumeric
Modif fthe F A b d to double clicl Form A
odify one of t : 'St a t ' —
ify one of the Form A’s to be (you may need to double click) A @
Form A

(sum of bin entries)

Modity the other as| | A [tOtSiZC(A) J Result

(number of bins)



Modify one Form F this way: And the other one this way:

Form F Form F
AJIAB  |[Resull A | |sqri(A)/B | [Resuld]
| B | B
(this is the average) (this is the error on the average)

Now hook them up (this is the fun part)

Clicking on the little black boxes makes a

little wire that you use to connect to another
little wire or a box.

Make Data an Array |

Minimum Time to accept &

Maximum Time to ﬂccept;g Put the data into hins

Size of each bin

, i AlphaNumeric
You will have to keep track of which boxes do what. ( ]
If you did this correctly, you can make an estimate of
the background in a bin, and the error associated. \
All you have to do is click to start the analysis again, Ly AlphaNumeric
then take the result you got here and plug it back into ( )

the lifetime calculation at its central value and at
the central value +/- the error to see the effect
on the lifetime.



Appendix D: The Mini Monte Carlo method

You will be creating about 10 different files, each of them having a different:
1) File name
2) Random Number Seed (the number that starts the Random Number Generator)

The first thing you need to determine is how much of your data is background. Take
the total number of events you wrote on your raw data tape and the number of
background events you calculated using the method of Appendix C. Divide the
number of background events by the total. This is the probability that you read a
background event. It will also be the probability that you generate a background
event.

Open the HPVEE program ‘‘muogen’” and double click on the little box

GenRandomEvent1

Enter the probability you calculated (typically less than 0.10) into the Real64 box
that is attached to the If/Then/Else box in the center part of the GenRandomEventl
box. (you can minimize this now)

Enter the result you got from the fit to the lifetime in the Real64 box that is attached
to the A*B box at the top of the GenRandomEvent1 box. You will need to enter this
as a negative number in microseconds. E.g. -2.2u

Now, modify the output file name to something like mygenl, and modify the number
in ‘‘Change this number for new fake data!’’ to 1. Click the start box.

Repeat this, each time changing the file name and the number for fake data.

Analyze each file as if it were data. (You don’t need to vary the background value
by its error, but you do need to use a new background number for each file.)

Record your results.

Make a histogram of the results. Make your bins as wide as your lifetime error
you got from the data. Does the spread of the generated data lifetimes roughly
follow what you expected?  Results from an event sample of 14000 events:

Lifetime = 2.115us

[ expect roughly 7 events within
4 — Emor= +/-0.022us

one standard deviation of the
center. I see 6. Not too bad for
such low statistics, thouugh I
see more events beyond 2 s.d.

[95]

[\
l

More trials would be
useful.

Number of event in the bin

i
2.049  2.093




