A <u>Physical</u> Pendulum as Simple Harmonic Motion

Rigid body with Mass **M** and **cg** fixed location CG is rotated by an angle θ wrt vertical Rigid body will rotate about a pivot point **O** Rotation is due to torque τ from weight The component of weight Mg sin θ gives τ

 $\tau = -Mg \sin\theta L = I\alpha = -I (d^2\theta/dt^2)$ $d^2\theta/dt^2 = -(MgL/I)\sin\theta$

Not exactly a restoring force equation Make the small angle approx. $\sin\theta = \theta$ $d^2\theta/dt^2 = -(MgL/I)\theta$

Solution: $\theta(t) = \theta_m \cos(\omega t + \phi)$ with $\omega^2 = MgL/I$ SHM for a *physical* pendulum

Resolving the weight force Mg Component perpendicular to L provides τ n θ