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Chapter 7: Conservation of Mechanical Energy in Spring Problems

The principle of conservation of Mechanical Energy can also be applied to sys-
tems involving springs. First take a simple case of a mass traveling in a horizontal
direction at constant speed. The mass strikes a spring and the spring begins to
compress slowing down the mass. Eventually the mass stops and the spring is
at its maximum compression. At this point the mass has zero kinetic energy
and the spring has a maximum of potential energy. Of course, the spring will
rebound and the mass will finally be accelerated to the same speed but opposite
in direction. The mass has the same kinetic energy as before, and the spring
returns to zero potential energy.
Spring Potential Energy

If a spring is compressed (or stretched) a distance x from its normal length, then
the spring acquires a potential energy U spring(x):

U spring(x) =
1

2
kx2 (k = force constant of the spring)

Worked Example A mass of 0.80 kg is given an initial velocity vi = 1.2 m/s
to the right, and then collides with a spring of force constant k = 50 N/m.
Calculate the maximum compression of the spring.
Solution by Conservation of Energy

Initial Mechanical Energy = Final Mechanical Energy
Ki + Ui = Kf + Uf

1

2
mv2

i + 0 = 0 +
1

2
kx2

=⇒ x = vi

√

m

k
= 1.2

√

√

√

√

0.8

50
= 0.152 m



Lecture 10: Potential Energy, Momentum and Collisions 2

Chapter 8: LINEAR MOMENTUM and COLLISIONS

The first new physical quantity introduced in Chapter 8 is Linear Momentum

Linear Momentum can be defined first for a particle and then for a system of
particles or an extended body. It is just the product of mass and velocity, and
is a vector in the same direction as the velocity:

~p = m~v particle

~P = M~vcm system of particles ~vcm ≡ center-of-mass velocity

Why have this momentum quantity? In fact it was Newton himself who intro-
duced the quantity in his version of Newton’s Second Law. For the case of a
particle one has:

~F =
d~p

dt

=⇒ ~F =
d(m~v)

dt
= m

d~v

dt
= m~a

Here we are making use of the fact that the mass m of a particle does not change
with time. The same derivation can be made for a system of particles, or an
extended body, as long as we always include all the mass.

~Fext =
d~P

dt

=⇒ ~Fext =
d(M~vcm)

dt
= M

d~vcm

dt
= M~acm

Conservation of Linear Momentum

The important use of Linear Momentum comes about when we consider the
special case when there is no net force acting. This defines an isolated system.
In that case, the left hand sides of the two above equations are zero. Therefore,
the linear momentum of the particle, or of the system of particles, is constant.

F = 0 =⇒ ~p = constant or ~pi = ~pf

Fext = 0 =⇒ ~P = CONSTANT or ~Pi = ~Pf

THE CONSERVATION OF ENERGY LAW AND THE CONSERVATION
OF MOMENTUM LAW ARE THE TWO MOST IMPORTANT LAWS OF
PHYSICS. THESE TWO LAWS ARE THE FOUNDATION OF SCIENCE.
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EXAMPLE of LINEAR MOMENTUM CONSERVATION

One example of linear momentum conservation involves the recoil of a cannon
(or a rifle) when a shell is fired.

A cannon of mass M = 3000 kg fires a shell of mass m = 30 kg in the horizontal
direction. The cannon recoils with a velocity of 1.8 m/s in the + ı̂ direction.
What is the velocity of the velocity of the shell just after it leaves the cannon
ball?

Remember that we have to deal with isolated or self-contained systems. In
this example the isolated system is the cannon plus the shell, not just the
cannon by itself of the shell by itself. The explosion which fires the shell is
an INTERNAL force, so it does not enter into the problem. There are no
EXTERNAL forces acting in the horizontal direction, so linear momentum is
conserved in the horizontal direction

~Pi = ~Pf

The initial linear momentum ~Pi = 0 because nothing is moving.
The final linear momentum ~Pf = 0 also, but it can be expressed as the sum of
the linear momenta of the cannon and the shell:

~Pi = 0 = ~Pf = M ~V + m~v

Here ~V is the velocity of the cannon and ~v is the velocity of the shell.

Clearly ~V and ~v are in opposite directions, and

~v = −
M ~V

m
=⇒ ~v = −

3000 · 1.8

30
ı̂ = −180 ı̂ m/s

Decay of Subatomic Particles

Another example of conservation of momentum is the decay of an isolated sub-
atomic particle such as a neutral kaon written symbolically as K0. A neutral
kaon decays into two other subatomic particles called charged pions, symbolized
as π+ and π−. The decay equation is written as

K0
→ π+ + π−

By conservation of momentum we can easily prove that the two pions have equal
and opposite momenta.



Lecture 10: Potential Energy, Momentum and Collisions 4

Impulse of a Force

We define another vector physical quantity called the Impulse of a Force.

In the simplest case, if a constant force F acts over a short period of time ∆t,
then the impulse of that force is equal to the product of the force and the length
of time over which it acts. The impulse vector is denoted by the symbol ~J

~J = ~F∆t (constant force F)

~J = ∆~p (is proved below from Newton’s Second Law

If the force is not constant, then the definition of impulse requires an integral

~J ≡

∫

~F(t)dt = ∆~p

The impulse calculation is useful in determining how much force or momentum
is involved in violent collisions lasting very short periods of time.

The impulse of a force is a useful vector quantity for determining how much
force or momentum is involved in violent collisions lasting very short periods of
time. By definition, the impulse ~J is given as the product of the average force
and the time over which the force was exerted

~J ≡ ~F∆t =⇒ ~J =
∫ t′=t+∆t

t′=t

~F dt

However, by Newton’s Second Law the average force can be written as:

~F =
∆~p

∆t
=⇒ ~J =

∆~p

∆t
∆t = ∆~p

The book calls this equality the Impulse-Linear-Momentum-Theorem but
it is just a simple consequence of Newton’s Second Law of motion.
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Example of Impulse and Momentum Calculations

In a crash test, an automobile of mass 1500 kg collides with a wall. The initial
velocity of the car was vi = −15 m/s to the left, and the final velocity was
vf = +2.6 m/s to the right. If the collision lasted 0.15 seconds, find the impulse
and the average force exerted on the car during the collision.

The “average force” means that we are making a constant force approximation
here (the usual case) for which the impulse of the force is:

~J ≡ ~F∆t = ∆~p

We are given the time duration ∆t = 0.15 s, so now we need to find the right
hand side of this equation. We need to find ∆~p.
The ∆~p is the change in the momentum vector of the car. This means the final
minus the initial momentum

∆~p = ~pf − ~pi

Finally, to calculate the initial and final momenta we use the definition of mo-
mentum as the product of mass and velocity ~p ≡ m~v

~pi = m~vi = (1500 kg)(−15.0 m/s) = −22, 500 kg-m/s

~pf = m~vf = (1500 kg)(+2.6 m/s) = +3, 900 kg-m/s

To obtain the impulse of the force, and the force itself we have:

~J = ∆~p = ~pf − ~pi = 3, 900 − (−22, 500) = 26, 400 kg-m/s

~J = ~F∆t = ∆~p =⇒ ~F =
∆~p

∆t
=

26, 400 kg-m/s

0.150 s
= 176, 000 N

This force is 12 times the car’s own weight !!
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Collisions Between Two Isolated Particles

Constant Momentum for an Isolated System

The previous example involved essentially just one particle, the car. The wall
was fixed there as a device for exerting a constant force during the collision. A
more complex example can be studied when two particles collide. We first make
the approximation that the two particles are subjected to no external forces.
The only forces being exerted are the forces between the two particles. In fact
these are the action and the reaction forces which we have seen in discussing
Newton’s third law.
We can prove that if two particles form an isolated system unaffected by any
other particles, then the vector sum of the momentum of each particle

remains constant. We call the vector sum of the two particle momenta the
system momentum P

~P ≡ ~p1 + ~p2

~P = CONSTANT if there are no external forces

Collision between Two Particles in an Isolated System

When two particles in an isolated system collide, the total momentum of the
system is the same after the collision as it was before the collision. The total
momentum remains equal to the initial momentum:

m1~v1i + m2~v2i = m1~v1f + m2~v2f)

~p1i + ~p2i = ~p1f + ~p2f

This principle of the conservation of momentum is one of the strongest in all of
physics. Even if there are internal, frictional forces acting which decrease the
total mechanical energy, it is nonetheless still true that the total momentum of

an isolated system at all times equals the initial momentum.

The principle of momentum conservation also applies to an isolated system which
suddenly decomposes into two or more interacting pieces. For example a rifle
firing a bullet, a cannon firing a cannonball etc. We first define two basic types
of collision and then consider each of these basic types in more detail.
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Two Basic Types of Two-Particle Collisions Conserving Momentum

The typical situation in momentum conservation involves two particles in the
initial system with one or both of these having a velocity. These two particles
collide where again only internal forces act, and the particles separate with
certain final velocities. Conservation of momentum enables us to relate the final
velocities to the initial velocities. There are two basic types of collision:
1) Elastic Collisions, and 2) Inelastic Collisions

1) Elastic Collision

An elastic collision is one in which the total kinetic energy of the two particles
is the same after the collision as it was before the collision. Examples of elastic
collisions are those between billiard balls, between masses and springs, and those
involving rubber or tennis balls.
For elastic collisions one can write not only the momentum conservation equa-
tion, but also one can write a kinetic energy conservation equation:

m1v1i + m2v2i = m1v1f + m2v2f (momentum conserved)

1

2
m1v

2
1i +

1

2
m2v

2
2i =

1

2
m1v

2
1f +

1

2
m2v

2
2f (kinetic energy conserved)

By combining these two equations one can achieve the general result that

v1i − v2i = −(v1f − v2f)

The relative velocity of approach is the negative of the relative velocity of sepa-

ration.

2) Inelastic and Perfectly Inelastic Collisions

If there are very strong frictional and deformation forces, then kinetic energy
will no longer be conserved and instead one will have an inelastic collision.

The limiting case of an inelastic collision is one in which the two particles fuse
during the collision, and travel together afterwards with the same final velocity
v1f = v2f ≡ vf =⇒ the perfectly inelastic collision

m1v1i + m2v2i = m1vf + m2vf (particles with same final velocity)

=⇒ vf =
m1v1i + m2v2i

m1 + m2

(perfectly inelastic collision)



Lecture 10: Potential Energy, Momentum and Collisions 8

Example of Perfectly Inelastic Collision

A Cadillac with a mass of 1800 kg, while stopped at a traffic light, is rear ended
by a Volkswagen with a mass of 900 kg traveling at 20 m/s. After the collision
both cars are completely entangled, and slide into the intersection. What is their
velocity after the collision ?

The relevant equation for a completely inelastic collision is

vf =
m1v1i + m2v2i

m1 + m2

(perfectly inelastic collision)

Take the Cadillac to be m1, and the Volkswagen to be m2. In this case we have
v1i = 0 so

vf =
m1v1i + m2v2i

m1 + m2

= vf =
m2v2i

m1 + m2

=
900 · 20

1800 + 900
= 6.67 m/s

We can compute the change in kinetic energy as follows

Ki =
1

2
(m1v

2
1i + m2v

2
2i) =

1

2
m2v

2
2i =

1

2
(900)(20)2 = 180, 000 Joules

Kf =
1

2
(m1v

2
1f +m2v

2
2f) =

1

2
(m1+m2)v

2
f =

1

2
(900+1800)(6.67)2 = 60, 000 Joules

∆K ≡ Kf − Ki = 60, 000 − 180, 000 = −120, 000 Joules

Where did all this kinetic energy go ??

Other types of perfectly inelastic collisions include bullets fired into blocks of
wood after which the bullet is slowed down and stopped inside the wood.
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Elastic Collisions in One Dimension

The opposite extreme from a perfectly inelastic collision is a perfectly elastic
collision where the kinetic energy is conserved. So one has two equations with
which to solve problems. By combining those two equations (conservation of
momentum and conservation of kinetic energy) one can arrive at a third equation
which gives

v1i − v2i = −(v1f − v2f)

The relative velocity of approach is the negative of the relative velocity of sepa-

ration

Example of Elastic Collision

Two billiard balls have velocities of +2.0 and −0.5 m/s before they meet in a
head–on collision. What are their final velocities ?

v1i − v2i = −(v1f − v2f)

2 − (−0.5) = −(v1f − v2f) =⇒ v2f = 2.5 + v1f

Now substitute this into the general conservation of momentum equation, real-
izing that the masses are identical

m1v1i + m2v2i = m1v1f + m2v2f

v1i + v2i = v1f + (1.5 + v1f) = 2v1f + 1.5

+2.0 − 0.5 = 2v1f + 2.5

v1f = −0.5 m/s ; v2f = 2.5 − 0.5 = 2.0 m/s

In equal mass elastic collisions in one dimension, the masses simply ex-

change velocities. In equal mass, one dimensional elastic collisions with

the first particle at rest, the second particle stops and the first particle goes

forward with the original velocity of the second particle.

There are a number of useful equations involving elastic collisions in special
situations in one dimension. You don’t have to memorize these, but they could be
useful in solving certain problems. Also, study the examples of two–dimensional
collisions.
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Two Dimensional Collisions
Collisions between objects can also occur in two dimensions. The easiest example
is two particles, m1 and m2 initially traveling towards each other on a straight
line with velocities ~vi1 and ~vi2 This direction is conventionally called the x

direction. The particles hit and then go off with velocity components in both
the x and the y directions given by velocities ~v1f and ~v2f The basic principle in
two dimensional collisions is the same as in one dimensional collisions:

Initial Momentum = Final Momentum

m1~vi1 + m2~vi2 = m1~v1f + m2~v2f

Elastic Two Dimensional Collisions

A typical two-dimensional collision involves particle m1 traveling at known speed
v1 hitting particle m2 which is initially at rest. After the collision particle m1

goes off at velocity ~v1f which is at an angle θ with respect to the original x axis.
Particle m2 goes off at velocity ~v2f which is at an angle φ with respect to the
original x axis.
We can now write the conservation of momentum equation as follows:

X component m1vi1 = m1v1f cos θ + m2v2f cos φ

Y component 0 = m1v1f sin θ + m2v2f sin φ

If the initial speed vi1 is known, then there are four unknowns in the right
hand side: v1f , v2f , θ, and φ. Equivalently, each final velocity vector has two
components, so that means four unknowns.
Since we have only two equations, this means that there is no unique answer
available. So we need more equations ! If the collision is elastic, then we know
that the kinetic energy before is equal to the kinetic energy after the collision

1

2
m1v

2
i1 =

1

2
m1v

2
1f +

1

2
m2v

2
2f

So that means we can solve the problem if we specify one more of the unknowns.
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Example of Elastic Two Dimensional Collisions
As an example of a two dimensional collision) we consider one proton traveling
at known speed (3.5×105 m/s) colliding elastically with a second proton initially
at rest. After the collision, one proton moves off at an angle θ of 37owith respect
to the initial direction. What are the speeds of the two protons after the collision
and what is the angle of the velocity of the second proton after the collision?
The solution is to write down the conservation of momentum along the two
coordinate axes, and to use conservation of kinetic energy

X component m1vi1 = m1v1f cos θ + m2v2f cos φ

Y component 0 = m1v1f sin θ + m2v2f sin φ

1

2
m1v

2
i1 =

1

2
m1v

2
1f +

1

2
m2v

2
2f

Since the masses are all the same, we can divide those out right away. We get

X component 3.5 × 105 = v1f cos 37 + v2f cos φ

Y component 0 = v1f sin 37 + v2f cos φ

(3.5 × 105)2 = v2
1f + v2

2f

There are three equations in three unknowns, so an exact solution is possible.
It’s actually very tedious to solve algebraically on paper. It’s much easier to
program it up on a spreadsheet or on a computer, and solve it that way. The
result in this case is

v1f = 2.80 × 105 m/s

v2f = 2.11 × 105 m/s

φ = 53.0o

Notice that θ+φ = 37+53 = 90o. This is always true when equal masses collide
elastically.
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The Center-of-Mass
Special Property of the Center-of-Mass

Consider a collection of say N particles with individual masses mi where i ranges
from 1 to N . Each of these particles has a position coordinate ~ri with respect to
a common Cartesian reference frame. Now assume that the particles are free to
collide elastically and inelastically with one another, but there are no external

forces acting. The resulting movement of the particles after the collisions may
look to be very complicated. However, there is one simplifying feature. Namely
there exists a point called the center-of-mass whose velocity never changes. If this
center-of-mass point was not moving initially before any of the collisions take
place, then it will not have moved after the collisions have taken place. Similarly,
if the center-of-mass point was moving at constant velocity, it will continue to
move at the same constant velocity before, during, and after the collisions. In

an isolated system which has no external forces acting, the center-of-mass has

no acceleration!

How to find the center-of-mass for N point particles

Finding the center-of-mass for N point particles is an easy mathematical exercise
in Cartesian coordinates. We compute the averages of the xi, yi, and the zi

positions where those averages are weighted by the mass mi of the particle at
that position. If the M is the sum of all the mi, then mathematically we have

xCM =

∑N
i=1 mixi

M
; yCM =

∑N
i=1 miyi

M
; zCM =

∑N
i=1 mizi

M

~rCM = xCM ı̂+yCM ĵ+zCM k̂ =

∑N
i=1 mixi ı̂ +

∑N
i=1 miyi ĵ +

∑N
i=1 mizi k̂

M
=

∑N
i=1 mi~ri

M

How to find the center-of-mass for an extended single mass

An extended (non-point) mass also has a center-of-mass point. If the mass is
symmetrical, and of uniform density, then the center-of-mass point is at the
geometric center of the shape. For an extended mass, the weight can be consid-
ered to be acting at the center-of-mass point. This has consequences, as in the
Leaning Tower of Pisa class demonstration. The center-of-mass for an extended
single mass is computed with integrals

xCM =

∫

x dm

M
; yCM =

∫

y dm

M
; zCM =

∫

z dm

M
You must know the mass distribution to complete these integrations.
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Motion of a System of Particles
The velocity of the center-of-mass for N particles

On the previous page we saw that the velocity of the center-of-mass for N

particles is supposed to be constant in the absence of external forces. Here we
can prove that statement.
First we obtain the formula for the center-of-mass velocity

~vCM =
d~rCM

dt
=

1

M

N
∑

i=1

mi

d~ri

dt
=

1

M

N
∑

i=1

mi~vi

Now we cross multiply by the M to obtain

M~vCM =
N
∑

i=1

mi~vi =
N
∑

i=1

~pi = ~ptot

The above equation states that for a collection of N mass mi, it appears that
total momentum of the system is concentrated in a fictitious mass M moving
with the velocity of the center-of-mass point. To the outside world, it’s as if the
N particles were all just one mass M located at the center-of-mass point.

The acceleration of the center-of-mass for N particles

Having obtained an expression for the velocity of the center-of-mass we can now
look at the acceleration of the center-of-mass

~aCM =
d~vCM

dt
=

1

M

N
∑

i=1

mi

d~vi

dt
=

1

M

N
∑

i=1

mi~ai

Again doing the multiplication by M we get the Newton’s Second Law expression

M~aCM =
N
∑

i=1

mi~ai =
N
∑

i=1

~Fi = ~Fext

The fictitious total mass M is moving with an acceleration ~aCM as given by a
total external force. If the total external force is zero (only internal forces are
acting) then the acceleration of the center-of-mass point is zero. This also means
that the total momentum of the system, ~ptot is constant.


