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Chapter 8: The Center-of-Mass
Special Property of the Center-of-Mass

Consider a collection of say N particles with individual masses mi where i ranges
from 1 to N . Each of these particles has a position coordinate ~ri with respect to
a common Cartesian reference frame. Now assume that the particles are free to
collide elastically and inelastically with one another, but there are no external

forces acting. The resulting movement of the particles after the collisions may
look to be very complicated. However, there is one simplifying feature. Namely
there exists a point called the center-of-mass whose velocity never changes. If this
center-of-mass point was not moving initially before any of the collisions take
place, then it will not have moved after the collisions have taken place. Similarly,
if the center-of-mass point was moving at constant velocity, it will continue to
move at the same constant velocity before, during, and after the collisions. In

an isolated system which has no external forces acting, the center-of-mass has

no acceleration!

How to find the center-of-mass for N point particles

Finding the center-of-mass for N point particles is an easy mathematical exercise
in Cartesian coordinates. We compute the averages of the xi, yi, and the zi

positions where those averages are weighted by the mass mi of the particle at
that position. If the M is the sum of all the mi, then mathematically we have

xCM =

∑N
i=1 mixi

M
; yCM =

∑N
i=1 miyi

M
; zCM =

∑N
i=1 mizi

M

~rCM = xCM ı̂+yCM ĵ+zCM k̂ =

∑N
i=1 mixi ı̂ +

∑N
i=1 miyi ĵ +

∑N
i=1 mizi k̂

M
=

∑N
i=1 mi~ri

M

How to find the center-of-mass for an extended single mass

An extended (non-point) mass also has a center-of-mass point. If the mass is
symmetrical, and of uniform density, then the center-of-mass point is at the
geometric center of the shape. For an extended mass, the weight can be consid-
ered to be acting at the center-of-mass point. This has consequences, as in the
Leaning Tower of Pisa class demonstration. The center-of-mass for an extended
single mass is computed with integrals

xCM =

∫

x dm

M
; yCM =

∫

y dm

M
; zCM =

∫

z dm

M
You must know the mass distribution to complete these integrations.
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Motion of a System of Particles
The velocity of the center-of-mass for N particles

On the previous page we saw that the velocity of the center-of-mass for N

particles is supposed to be constant in the absence of external forces. Here we
can prove that statement.
First we obtain the formula for the center-of-mass velocity

~vCM =
d~rCM

dt
=

1

M

N
∑

i=1

mi

d~ri

dt
=

1

M

N
∑

i=1

mi~vi

Now we cross multiply by the M to obtain

M~vCM =
N
∑

i=1

mi~vi =
N
∑

i=1

~pi = ~ptot

The above equation states that for a collection of N mass mi, it appears that
total momentum of the system is concentrated in a fictitious mass M moving
with the velocity of the center-of-mass point. To the outside world, it’s as if the
N particles were all just one mass M located at the center-of-mass point.

The acceleration of the center-of-mass for N particles

Having obtained an expression for the velocity of the center-of-mass we can now
look at the acceleration of the center-of-mass

~aCM =
d~vCM

dt
=

1

M

N
∑

i=1

mi

d~vi

dt
=

1

M

N
∑

i=1

mi~ai

Again doing the multiplication by M we get the Newton’s Second Law expression

M~aCM =
N
∑

i=1

mi~ai =
N
∑

i=1

~Fi = ~Fext

The fictitious total mass M is moving with an acceleration ~aCM as given by a
total external force. If the total external force is zero (only internal forces are
acting) then the acceleration of the center-of-mass point is zero. This also means
that the total momentum of the system, ~ptot is constant.
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CHAPTER 9: Rotation of a Rigid Body about a Fixed Axis

Up until know we have always been looking at “point particles” or the motion
of the center–of–mass of extended objects. In this chapter we begin the study
of rotations of an extended object about a fixed axis. Such objects are called
rigid bodies because when they rotate they maintain their overall shape. It is
just their orientation in space which is changing.

Angular Variables: θ, ω, α
The variables used to described the motion of “point particles” are displacement,
velocity, and acceleration. For a rotating rigid body, there are three completely
analogous variables: angular displacement, angular velocity, and angular acceler-

ation. These angular variables are very useful because the they can be assigned
to every point on the rigid body as it rotates about a fixed axis. The ordi-
nary displacement, velocity, and acceleration can be calculated at a given point
from the angular displacement, angular velocity, and angular acceleration just
by multiplying by the distance r of that point from the axis of rotation.

Equations of motion with constant angular acceleration α:

For every equation which you have learned to describe the linear motion of a
point particle, there is an exactly analogous equation to describe the rotational
motion (θ(t) and ω(t)) about a fixed axis.

Position with time: x(t) = x0+v0t+
1

2
at2 corresponds to θ(t) = θ0+ω0t+

1

2
αt2

Speed with time: v(t) = v0 + at corresponds to ω(t) = ω0 + αt

Speed with distance: v2(x) = v2

0+2a(x−x0) corresponds to ω2(θ) = ω2

0+2α(θ−θ0)

Relating linear kinematics with angular kinematics

For a purely rotating body, all points on the body move in circles about the
axis of rotation. Therefore, we can relate the linear distance s moved by a point
on the body to the angular displacement θ (in radians!) by knowing the radial
distance r of that point from the axis of rotation. We have

s = rθ 9.1

assuming that we defined the initial angular position of the point to be θ0 = 0
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Quantitative Aspects of Rotational Motion

Relating the linear displacement s to the angular displacement θ
If a point P is on a rigid body, and that rigid body is rotated about some axis
O which is a distance r away from the point P (see Fig. 9.2, page 286), then the
point P will move a distance s given by

s = rθ (9.1)

where the angle θ is in radians. There are 2π radians in a full circle (= 360o),
which makes one radian ≈ 57.3o

Relating the linear speed v to the angular velocity ω

Take the same rotation as described above, and now add that the rotation is
small amount ∆θ, and that it takes place in a small time interval ∆t. We can
now define the instantaneous angular velocity ω to be

ω(t) ≡ lim
∆t→0

∆θ

∆t
=

dθ

dt
(9.2)

Since v = ds/dt and s = rθ, then we will have

v(t) =
ds

dt
=

d

dt
(rθ) = r

dθ

dt
= rω(t) (9.13)

The definition of a rigid body means that the distance r of the point P away
from the axis of rotation does not change with time, so r can be treated as a
constant in the derivation of this last equation.

Relating the linear acceleration a to the angular acceleration α

Finally, we consider the same description again of point P rotating, and now
look at how fast the angular velocity ω is changing. Just as in linear motion, we
define the linear acceleration to be the rate of change of the velocity variable, in
rotational motion we define the angular acceleration to be the rate of change of
the angular velocity

α(t) ≡ lim
∆t→0

∆ω

∆t
=

dω

dt
=

d2θ

dt2
(9.6)

Don’t forget that acceleration in two dimensions has two, perpendicular compo-
nents: atotal = acentripetal + atangential, and these are given by:

atangential = rα acentripetal =
v2

r
=

(rω)2

r
= rω2 (9.15)
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Rotational Kinetic Energy

Consider a rigid body rotating with an angular velocity ω about an axis. Clearly
every point in the rigid body (except where the axis is located) is moving at some
speed v depending upon the distance away from the axis. Hence, the a rigid body
in rotation must possess a kinetic energy. The formula for the rotational kinetic
energy, you will see, is very similar to the formula for the kinetic energy of a
moving point particle once you make the “translation” to the variables describing
rotational motion.
In order to derive this formula, consider the rigid body to be composed of discrete
mass elements mi, where the distance of the mass element from the rotation axis
is given as ri. Then, from the previous notes, you know that the velocity of each
mass element is given by vi = riω. Note that each mass element can have a
different amount of mass mi, and can be at different distance ri, but all the
mass elements have a common angular velocity ω. The kinetic energy of the
rigid body is then simply the sum of the individual kinetic energies of all the
mass elements mi:

Krotational =
∑

i

1

2
miv

2

i =
∑

i

1

2
mir

2

i ω
2 =

1

2

(

∑

i

mir
2

i

)

ω2 =
1

2
Iω2 (9.17)

Here we introduce the moment of inertia I of the rigid body which is defined
as summation quantity inside the parenthesis:

I ≡

∑

i

mir
2

i (9.16)

The Moment of Inertia I
The moment of inertia I is the rotational analog of the mass of a point particle.
The moment of inertia depends not only on how much mass there is, but also
on where that mass is located with respect to the rotation axis. So the shape
of the rigid body must be specified, as well as the location of the rotation axis
before the moment of inertia can be calculated. For an arbitrarily shaped rigid
body having a density ρ, then the moment of inertia has to be calculated as an
integral. This has been done for many common shapes (see Table 9.2, page 299)

I = lim
∆mi→0

(

∑

i

∆mir
2

i

)

=
∫

r2dm =
∫

r2ρdV
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Chapter 10: Torque and Angular Acceleration

So far we have seen the rotational analogs of displacement, velocity, angular
acceleration, mass, and kinetic energy. The last analog variable to be considered
in this chapter is torque which is comparable to force. Note that all of these
“analogous variables” in rotational motion have different units than the linear
motion variables, and the same is true of torque. It is related to, but not the
same thing, as force.
We introduced force (in Newton’s second law F = ma) as the quantity which
causes a mass to accelerate. We can do the same thing with the concept of
torque. A torque, τ , is the quantity which causes a rigid body to undergo an
angular acceleration with respect to some axis of rotation. In fact we have a
very similar formula relating torque and angular acceleration:

τ = Iα (10.7)

This is closely related to Newton’s second law where on the right hand side
we are using the rotational motion variables moment of inertia and angular
acceleration, instead of the linear motion variables mass and linear acceleration.

Torque: a qualitative description

The quantity torque is that which causes a rigid body to have a rotational accel-
eration about some axis. In order to give a rigid body a rotational acceleration,
it is clear that one has to exert a force. However, where the force is applied makes

a difference. If applies a force whose line of action goes through the proposed
axis of rotation, then no rotation will occur. All that will happen is that the
axis of rotation will exert an oppositely directed force and no motion will occur.
The best example is that of a door where the axis of rotation is the door hinges.
If you exert a force on the door close to or right at axis of the door hinges, then
you will have a very difficult time opening a door. Instead you exert the force at
the farthest possible distance from the door hinge, and perpendicular (θ = 90o)
to the distance from the axis. This provides you with the maximum torque for
a given about of force. The general formula for torque is

τ = Fr sin θ (10.3)

The angle θ is the angle between the line of action of the force F and the distance
r from the axis of rotation.
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Worked Example in Rotational Acceleration
A solid cylinder of outer radius R1 has an inner axis of radius R2 (R2 < R1)
through its center. A rope wrapped clockwise around R1 exerts a force F1, while
a second rope wrapped around the radius R2 in the opposite direction exerts a
force F2. Both forces are exerted perpendicular to the radius vector from the
axis center. What is the net torque exerted on the cylinder?
The force F1 tends to turn the cylinder in a clockwise direction. By convention,
torques which cause clockwise acceleration have a negative sign:

τ1 = −F1 · R1 · sin 90o = −F1R1

The force F2 tends to turn the cylinder in a counterclockwise direction. Again,
by convention, torques which cause counterclockwise acceleration have a positive

sign:
τ2 = +F2 · R2 · sin 90o = +F2R2

Then total torque on the cylinder is the sum of τ1 and τ2

τnet = τ1 + τ2 = −F1R1 + +F2R2

To give a specific case, suppose F1 = 5 N, F2 = 6 N, R1 = 1.0 m, and R2 = 0.5
m. The net torque is then

τnet = −F1R1 + +F2R2 = −5 · 1.0 + 6 · 0.5 = −2 N-m

Since the net torque is negative, this means that the cylinder will rotate in the
clockwise direction.
Note that the units of torque are Newton–meters (N–m). So don’t confuse torque
with force; they are different quantities. (You have previously learned another
quantity with units of N–m. Do you recall that quantity?)
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Torque and Angular Momentum
Worked Example

A uniform rod of length L and mass M is free to rotate about a pivot at the
left end of the rod. The rod is initially in a horizontal position, and then is
released. What is the initial angular acceleration of the right end of the rod,
and the initial linear acceleration?
From the description of the problem, you should quickly see that the rod will just
swing down (clockwise) much like a pendulum. Physically what is happening
is that the at the center–of–mass of the rod, the force of gravity is exerting a
torque with respect to the pivot point

τgravity = (Mg)
L

2
sin 90o =

MgL

2

(This actually should have a negative sign since it is a clockwise torque, but since
we are not worried about balancing other torques, then the sign is ignored.)
Now the “Newton’s Second Law of Rotational Motion” relates the torque to

the angular acceleration by using the moment of inertia I

τ = Irodα

Irod =
1

3
ML2 (thin rod about axis at one end)

τ = Irodα =
1

3
ML2α =

MgL

2
=⇒ α =

3g

2L
This angular acceleration is common to all points along the rod. To get the
tangential acceleration at the end of the rod, you have to multiply α by the
distance of the end of the rod from the pivot point

atangential = Lα =
3

2
g

Believe or NOT: This value of acceleration is actually greater than g !

Finally, does the pivot point exert any force on the rod? Think of the situation
at the end when the rod has come down to a vertical position. If the pivot point
is exerting a force, why don’t we use it too when computing the net torque?
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Worked Example

A wheel of radius R, mass M , and moment of inertia I is mounted on a horizontal
axle. A mass m is vertically attached by a light cord wrapped around the
circumference of the wheel. The m is dropping, and the wheel is rotating, both
with an acceleration. Calculate the angular acceleration of the wheel, the linear
acceleration of the mass m, and the tension in the cord.
This is a good example with which to test your comprehension of torques and
rotational motion. You really should understand this solution thoroughly before
being satisfied that you know about rotational motion and torques.
The solution to this problem just requires the use of Newton’s second law both
in its linear and rotational forms. Three equations will be produced. First, for
the mass m, the net force acting on m is

Fm = mg − T = mam

where T is the tension in the cord supporting the mass.
Next, for the wheel, the tension T acts to produce a torque with respect to the
axis of rotation. This torque is given by

τT = TR = Iα =
1

2
MR2α

where we have used the expression for I valid for a solid disk.
Finally, because the cord is inextensible, the linear acceleration of the mass m

is communicated to the tangential acceleration of the wheel, which in turn is
related to the angular acceleration of the wheel

am = atangential = Rα

Now work backwards substituting first for α, and then for T

α =
am

R
=⇒ TR =

1

2
MR2

am

R
=⇒ T =

Mam

2

Now substitute in the Fm equation

mg − T = mam =⇒ mg −
Mam

2
= mam

=⇒ am =
2gm

M + 2m
; α =

2gm

R(2m + M)
; T =

Mmg

2m + M
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Angular Momentum of Rigid Bodies and Single Particles

We define the angular momentum of a rigid body rotating about an axis is

L = Iω

Angular momentum is a vector. For simplicity we deal with symmetric rigid
bodies rotating about one of their symmetry axes. For these cases, the direction
of the angular momentum is given by the right hand rule. Curl the fingers of
your right hand in the direction that the rigid body is rotating. Your thumb will
point in the direction of the angular momentum.

The angular momentum of a point particle

The basic definition of angular momentum is for a point particle moving at some
velocity v and at a vector distance r away from some reference axis. The angular
momentum of the point particle is given by

~l = ~r × ~p = m(~r × ~v)

Conservation of Angular Momentum of a Rigid Body

You remember that we can write Newton’s Second law as force is the time rate
of change of linear momentum

~F =
d~p

dt
We have the equivalent to Newton’s Second Law for rotations

~τ =
d~L

dt
The net toque is equal to the time rate of change of angular momentum.
Now when there is no external torque, then the angular momentum of a rigid
body must remain constant. A great example of angular momentum the spinning
of an ice skater. When there is no external torque angular momentum must be
conserved. We write

Li = Lf


