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Chapter 10: Torque and Angular Acceleration
So far we have seen the rotational analogs of displacement, velocity, angular
acceleration, mass, and kinetic energy. The last analog variable to be considered
in this chapter is torque which is comparable to force. Note that all of these
“analogous variables” in rotational motion have different units than the linear
motion variables, and the same is true of torque. It is related to, but not the
same thing, as force.
We introduced force (in Newton’s second law F = ma) as the quantity which
causes a mass to accelerate. We can do the same thing with the concept of
torque. A torque, τ , is the quantity which causes a rigid body to undergo an
angular acceleration with respect to some axis of rotation. In fact we have a
very similar formula relating torque and angular acceleration:

τ = Iα (10.7)

This is closely related to Newton’s second law where on the right hand side
we are using the rotational motion variables moment of inertia and angular
acceleration, instead of the linear motion variables mass and linear acceleration.

Torque: a qualitative description

The quantity torque is that which causes a rigid body to have a rotational accel-
eration about some axis. In order to give a rigid body a rotational acceleration,
it is clear that one has to exert a force. However, where the force is applied makes

a difference. If applies a force whose line of action goes through the proposed
axis of rotation, then no rotation will occur. All that will happen is that the
axis of rotation will exert an oppositely directed force and no motion will occur.
The best example is that of a door where the axis of rotation is the door hinges.
If you exert a force on the door close to or right at axis of the door hinges, then
you will have a very difficult time opening a door. Instead you exert the force at
the farthest possible distance from the door hinge, and perpendicular (θ = 90o)
to the distance from the axis. This provides you with the maximum torque for
a given about of force. The general formula for torque is

Vector Definition: ~τ = ~r × ~F =⇒ Magnitude: τ = rF sin θ (10.3)

The angle θ is the angle between the line of action of the force F and the
distance r from the axis of rotation. The angle of the vector ~τ is according to
the right-hand rule.
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Worked Example in Rotational Acceleration
A solid cylinder of outer radius R1 has an inner axis of radius R2 (R2 < R1)
through its center. A rope wrapped clockwise around R1 exerts a force F1, while
a second rope wrapped around the radius R2 in the opposite direction exerts a
force F2. Both forces are exerted perpendicular to the radius vector from the
axis center. What is the net torque exerted on the cylinder?
The force F1 tends to turn the cylinder in a clockwise direction. By convention,
torques which cause clockwise acceleration have a negative sign:

τ1 = −F1 · R1 · sin 90o = −F1R1

The force F2 tends to turn the cylinder in a counterclockwise direction. Again,
by convention, torques which cause counterclockwise acceleration have a positive

sign:
τ2 = +F2 · R2 · sin 90o = +F2R2

Then total torque on the cylinder is the sum of τ1 and τ2

τnet = τ1 + τ2 = −F1R1 + +F2R2

To give a specific case, suppose F1 = 5 N, F2 = 6 N, R1 = 1.0 m, and R2 = 0.5
m. The net torque is then

τnet = −F1R1 + +F2R2 = −5 · 1.0 + 6 · 0.5 = −2 N-m

Since the net torque is negative, this means that the cylinder will rotate in the
clockwise direction.
Note that the units of torque are Newton–meters (N–m). So don’t confuse torque
with force; they are different quantities. (You have previously learned another
quantity with units of N–m. Do you recall that quantity?)

Things to Know about Cross-Products

From the general definition of the cross-product of two vectors, you should be
able to prove the following

For any two vectors ~A × ~B = − ~B × ~A and ~A × ~A = 0

For the units vectors ı̂ × ĵ = k̂ ; ĵ × k̂ = ı̂ ; k̂ × ı̂ = ĵ
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Torque and Angular Momentum
Worked Example using Torques

A uniform rod of length L and mass M is free to rotate about a pivot at the
left end of the rod. The rod is initially in a horizontal position, and then is
released. What is the initial angular acceleration of the right end of the rod,
and the initial linear acceleration?
From the description of the problem, you should quickly see that the rod will just
swing down (clockwise) much like a pendulum. Physically what is happening
is that the at the center–of–mass of the rod, the force of gravity is exerting a
torque with respect to the pivot point

τgravity = (Mg)
L

2
sin 90o =

MgL

2

(This actually should have a negative sign since it is a clockwise torque, but since
we are not worried about balancing other torques, then the sign is ignored.)
Now the “Newton’s Second Law of Rotational Motion” relates the torque to

the angular acceleration by using the moment of inertia I

τ = Irodα

Irod =
1

3
ML2 (thin rod about axis at one end)

τ = Irodα =
1

3
ML2α =

MgL

2
=⇒ α =

3g

2L
This angular acceleration is common to all points along the rod. To get the
tangential acceleration at the end of the rod, you have to multiply α by the
distance of the end of the rod from the pivot point

atangential = Lα =
3

2
g

Believe or NOT: This value of acceleration is actually greater than g !

Finally, does the pivot point exert any force on the rod? Think of the situation
at the end when the rod has come down to a vertical position. If the pivot point
is exerting a force, why don’t we use it too when computing the net torque?
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Worked Example using Torques and Linear Motion

A wheel of radius R, mass M , and moment of inertia I is mounted on a horizontal
axle. A mass m is vertically attached by a light cord wrapped around the
circumference of the wheel. The m is dropping, and the wheel is rotating, both
with an acceleration. Calculate the angular acceleration of the wheel, the linear
acceleration of the mass m, and the tension in the cord.
This is a good example with which to test your comprehension of torques and
rotational motion. You really should understand this solution thoroughly before
being satisfied that you know about rotational motion and torques.
The solution to this problem just requires the use of Newton’s second law both
in its linear and rotational forms. Three equations will be produced. First, for
the mass m, the net force acting on m is

Fm = mg − T = mam

where T is the tension in the cord supporting the mass.
Next, for the wheel, the tension T acts to produce a torque with respect to the
axis of rotation. This torque is given by

τT = TR = Iα =
1

2
MR2α

where we have used the expression for I valid for a solid disk.
Finally, because the cord is inextensible, the linear acceleration of the mass m

is communicated to the tangential acceleration of the wheel, which in turn is
related to the angular acceleration of the wheel

am = atangential = Rα

Now work backwards substituting first for α, and then for T

α =
am

R
=⇒ TR =

1

2
MR2

am

R
=⇒ T =

Mam

2

Now substitute in the Fm equation

mg − T = mam =⇒ mg −
Mam

2
= mam

=⇒ am =
2gm

M + 2m
; α =

2gm

R(2m + M)
; T =

Mmg

2m + M
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Angular Momentum of Rigid Bodies and Single Particles

We define the angular momentum of a rigid body rotating about an axis is

L = Iω

Angular momentum is a vector. For simplicity we deal with symmetric rigid
bodies rotating about one of their symmetry axes. For these cases, the direction
of the angular momentum is given by the right hand rule. Curl the fingers of
your right hand in the direction that the rigid body is rotating. Your thumb will
point in the direction of the angular momentum.

The angular momentum of a point particle

The basic definition of angular momentum is for a point particle moving at some
velocity v and at a vector distance r away from some reference axis. The angular
momentum of the point particle is given by

~l = ~r × ~p = m(~r × ~v)

Conservation of Angular Momentum of a Rigid Body

You remember that we can write Newton’s Second law as force is the time rate
of change of linear momentum

~F =
d~p

dt
We have the equivalent to Newton’s Second Law for rotations

~τ =
d~L

dt
The net toque is equal to the time rate of change of angular momentum.
Now when there is no external torque, then the angular momentum of a rigid
body must remain constant. A great example of angular momentum the spinning
of an ice skater. When there is no external torque angular momentum must be
conserved. We write

Li = Lf
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Worked Example in Angular Momentum Conservation
Problem Statement, see pages 334–335

A professor has a moment of inertia IP = 3.0 kg-m2 about his symmetry axis,
with his arms outstretched. The professor standing on a turntable, holding a
dumbbell in each hand. The dumbbells weigh 5.0 kg each, and are at a distance
of 1.0 m from the professor’s axis of symmetry. The professor is set spinning at
a rate of 1 revolution every 2 seconds.
The professor draws the dumbbells into his chest, effectively 0.20 m from the
symmetry axis. His new moment of inertia becomes I ′

P = 2.2 kg-m2. His angular
rotation speed is observed to increase. Why? What is his new angular rotation
speed? How does the rotational kinetic energy compare before and after the
professor has drawn in the two dumbbells?
Problem Solution

The professors angular velocity increases because of angular momentum conser-
vation. This is the same effect as when an ice skater is spinning with his/her
arms outstretched, and then draws the arms in closely. The dumbbells enhance
the effect. Here is the numerical solution (page 335).

Angular momentum before = Angular momentum after

I1ω1 = I2ω2

The total moment of inertia before I1 is the sum of the professor’s moment of
inertia before and the contribution of the dumbbells which are initially 1.0 m
from the professor’s symmetry axis:

I1 = 3.0 + 2 ∗ 5.0 ∗ (1.0)2 = 13 kg-m2

After the professor brings in the two dumbbells to 0.20 m distance, the new total
moment of inertia I2 is

I2 = 2.2 + 2 ∗ 5.0 ∗ (0.2)2 = 2.6 kg-m2

Clearly since I2 < I1, then in order to conserve angular momentum we must
have ω2 > ω1. In fact

ω2 =
I1

I2

ω1 =
13.6

2.6
(
1 revolution

2 seconds
) = 2.5 rev/sec

The professors angular velocity increases by a factor of five, from 0.5 to 2.5
rev/sec.



Lecture 14: Rotational Dynamics Rotational Equilbrium 7

Worked Example in Angular Momentum Conservation
Problem Solution

As for the kinetic energy, we have K1 = I1ω
2

1
/2, and K2 = I2ω

2

2
/2. We have

to convert that ω from revolutions per second to radians per second, where one
revolution is 2π radians. After we do that we will find that K1 = 64 J and
K2 = 320 J. Why has the mechanical energy increased so much, the same factor
of five in fact?
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Chapter 11: Rotational Equilibrium
With the use of torques one can solve problems in rotational equilibrium.
Rotational equilibrium is the rigid body equivalent of the equilibrium of a particle
for which the net external force is 0.
Rotational equilibrium of a rigid body is summarized by the following statement:

The net clockwise torque equals the net counterclockwise torque

Statement of Problem

As an example consider a uniform horizontal beam of length 8.00 m, and weight
200 N. The beam is free to rotate about a pivot in a wall on one end of the beam.
The other end of the beam is tied to a cable making an angle of 53 degrees with
respect to the beam. A 600 N man is standing 2.00 m away from the wall. What
is the tension in the cable, and the force exerted by the pivot on the beam?
Method of Solution

Again this is an equilibrium problem. Nothing is being accelerated. So the net
force must be zero in the vertical and the horizontal directions. However, there
is more than that. There is no rotation either. So the clockwise torque must
be equal to the counter clockwise torque. Essentially we have three equations:
one for the vertical forces, one for the horizontal forces, and one for the torques.
We have three unknowns: the horizontal force of the pivot, the vertical force of
the pivot, and the tension in the cable. So we can solve for the three unknowns
from the three equilibrium equations.
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Worked Example in Rotational Equilibrium
Implementation of Solution

Call the pivot force ~R, and assume that it acts at an angle θ with respect to the
beam. Call the tension force in the cable ~T , where we are told that ~T acts at
an angle of 53 degrees. So we have the following two net force = 0 equilibrium
equations

∑
Fx = 0 = R cos θ − T cos 53

∑
Fy = 0 = R sin θ + T sin 53 − 600 − 200

Our third equation is for the sum of the torques being 0. We can choose the axis
of rotation any where we want. However, the smart thing to do is chose an axis
corresponding to the location of one of the forces. That way, the torque from
that force is automatically 0. The really smart thing to do is choose an axis
where an unknown force is acting. Then you don’t have to worry about that
unknown force. In this case the really smart axis choice is at the pivot point.
That give the net toque equation as

∑
τ = 0 = (T sin 53)(8.00) − (600)(2.00) − (200)(4.00)

Right away we can solve for T = 313 Newtons. We then plug this value of T

into our force equations to get

R cos θ = 188 Newtons

R sin θ = 550 Newtons

We divide the second of these equations by the first to obtain tan θ = 2.93 =⇒
θ = 71.1 degrees. And with this value of θ we find R = 581 Newtons.


