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REVIEW: (Chapter 12) Newton’s Law of Gravity
Newton deduced his Law of Universal Gravity based on the astronomical obser-
vations made in the previous two centuries.
Law of Universal Gravitation

FG = G
m1m2

r2
G = 6.674 ± 0.001 × 10−11N–m2/kg2

This force has infinite range, and also an inverse square dependence.

Gravity acceleration as a function of altitude
The g constant of gravitational acceleration has a value of 9.8 m/s2 on the Earth’s
surface. However, g will get smaller with altitude. Suppose we are at a distance
h above the Earth’s surface. What will the value of g be then?
We first solve for g at the Earth’s surface. In that case the r in Newton’s Law
of Universal Gravitation is RE. We take the weight force of a mass m. On the
Earth’s surface we have

w(r = RE) = mg(r = RE) = G
mME

R2
E

g(r = RE) = G
ME

R2
E

Now consider an altitude h such that r = RE + h. We now have

w(r = RE + h) = mg(r = RE + h) = G
mME

(RE + h)2

g(r = RE + h) = G
ME

(RE + h)2
= g

R2

E

(RE + h)2

So if we put in a value h = 2RE, an altitude of twice the Earth’s radius we get

g(r = 3RE) = g
R2

E

(3RE)2
=

g

9

So an object weighing 270 N on the Earth’s surface will weigh only 30 N when
placed at an altitude h = 2RE twice the Earth’s radius.
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Examples of gravity acceleration on other bodies
Gravity on the Moon, Mars, and Jupiter
The gravitational acceleration gm at the surface of some spherical mass m de-
pends on the radius of that mass and the size of that mass. For the Earth’s
surface we have

gE = G
ME

R2
E

= 6.67 × 10−11
5.97 × 1024

(6.38 × 106)2
= 9.8 m/s2

For the Moon’s surface we have

gM = G
MM

R2
M

= 6.67 × 10−11
7.35 × 1022

(1.74 × 106)2
= 1.6 m/s2

The Moon’s surface gravitational acceleration is about 1/6 of the Earth’s gravi-
tational acceleration For Jupiter’s surface we have

gJ = G
MJ

R2
J

= 6.67 × 10−11
1.90 × 1027

(6.91 × 107)2
= 26.5 m/s2

Jupiter’s surface gravity is “only” three times that of the Earth’s, even though
Jupiter is 300 times more massive than the Earth. The relatively small increase
in g given the large mass increase is because of the much bigger radius of Jupiter.
Now, consider a human being of mass 70 kg rolled up into more or less a spherical
shape with a radius of 0.30 m. A human gravitational acceleration is

gH = G
MH

R2
H

= 6.67 × 10−11
70

(0.3)2
= 5.2 × 10−8 m/s2

So two humans attract each other with a force of roughly 8 orders of magnitude
below the force that the Earth attracts one of them.

Gravity and Astrology
Consider a star say 4.35 light-years away. The system Alpha-Centauri, which
are actually 3 stars, is at that distance which are the closest stars to our solar
system. What is the gravitational acceleration on us from one of those stars,
which has the same mass as our Sun?

gA−C = G
MA−C

r2
= 6.67×10−11

1.99 × 1030

(4.35 ∗ 3 × 108 ∗ 365 ∗ 24 ∗ 3600)2
= 4.5×10−11 m/s2

The gravitational acceleration from the Earth’s nearest star is three orders of
magnitude less than the gravitational acceleration of your nearest neighbor.
“The fault, dear Brutus, is not in our stars but in ourselves...”

[Wm. Shakespeare in Julius Caesar I,ii,140–141, 70 years before Isaac Newton]
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Universal Gravity from Real Spherical Masses
Solar System Dimensions
In our solar system the almost spherical Sun has a mass of MS = 1.99× 1030 kg,
and a radius of 6.96 × 108 m. For comparison the Earth–Moon radial distance
is 3.84 × 108 m, just more than half the size of the Sun’s radius alone.
The Earth’s orbital radius is 1.50×1011 m, more than 200 times the Sun’s radial
size. So you might think that it is only a good approximation, at the half-percent
level, to think of the Sun as a point mass in Newton’s Universal Gravity Law as
a function of distance r away from the center of the Sun

FG(r) = GmpMS/r2

In fact even if the Sun’s radius were almost the orbital radius of the Earth, it is

exactly correct to regard the Sun’s mass as all at its center for purposes of

calculating Newton’s Law of Gravity on the Earth!

Results from Calculus for Newton’s Universal Law of Gravity
As you know, Newton’s invented calculus to help him in proving the mathemat-
ical consequences of his Universal Law of Gravity. Using calculus Newton first
proved two rules for dealing with the gravitational force from a spherical mass
M which has a spherical radius RM . These two rules are:

1) For radial distances r ≥ RM of a mass m from M , the force of gravity can
be computed as if all the mass M was at the center of the sphere

Force outside sphere’s radius: FG(r ≥ RM) = G
mM

r

2) For radial distances r ≤ RM of a mass m from M , meaning m is inside of
M , then the force of gravity is computed by taking that part of the mass
of M which is located inside of radial distance r

Force inside sphere’s radius: FG(r ≤ RM) = G
mM(r)

r
If the mass M has a uniform spherical density ρM , we can calculate

ρM =
M

V
=

M

4/3πR3
=⇒ M(r) = ρV (r) =

M

4/3πR3
×

4

3
πr3 =

r3

R3
M

=⇒ Force inside sphere’s radius: FG(r ≤ RM) = G
m

r2
(
r3

R3
M) = G

mMr

R3

The gravity force at the center of a sphere (i.e. r = 0) is zero!
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Energy in Planetary Orbits
Kinetic Energy for a Planet in Circular Orbit due to the Sun’s Gravity
All planets have negative mechanical energy?

How can this be? It surely can’t be because of the Kinetic Energy K = 1

2
mpv

2

which has to be positive because all planets have a non-zero speed. We can work
out the formula for the speed of a planet in circular orbit of radius R, as we did
for the Kepler’s Third Law derivation

Fcentripetal =
mpv

2

R
= FGravity = G

mpMS

R2

=⇒ v2 = G
MS

R
=⇒ v =

√

√

√

√G
MS

R
You can see in the above equation that the speed of a planet in orbit about the
Sun is independent of the mass of the planet. At a given radius R from the Sun,
all objects in circular orbit will have the same speed. So in the asteroid belt
between Mars and Jupiter, all the asteroids have about the same speed if they
are at the same distance from the Sun in circular orbit.

Potential Energy for a Planet in Circular Orbit due to Sun’s Gravity
If the total energy is negative then it must the the “fault” of the potential energy.
For the Universal Gravity force, we can derive from the integral definition that
the potential energy is given by the formula

U ≡ −

∫

F (r)dr =⇒ US
G(R) = −G

mpMS

R
The absolute value, or zero reference, of potential energy is arbitrary. Normally
we say the gravity potential energy is zero when two masses are infinitely far
apart. In the above formula, mp is the mass of the planet, R is the orbital radius
of the planet (distance from the Sun), and MS is the mass of the Sun.

Total Energy for a Planet in Circular Orbit due to the Sun’s Gravity
We can get the total energy for a planet in circular orbit about the Sun by
summing up the kinetic and the potential energies

E =
1

2
mpv

2 + US
G(R) =

1

2
mpG

MS

R
− G

mpMS

R
= −

1

2
G

mpMS

R
The total energy of a planet in circular orbit about the Sun is negative, and equal
to one have the potential energy. Equivalently, the total energy of a planet in
circular orbit about the Sun is equal to the negative of the kinetic energy.
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Energy in Planetary Orbits

The Escape Speed from the Earth’s Surface
We can compute the total energy of a particle of mass m at the Earth’s surface
by similarly summing up the kinetic energy and the potential energy due to the
Earth’s gravity. For that potential energy we use the previous potential energy
formula, but substituting the Earth’s mass ME for the Sun’s mass, and using
the Earth’s radius RE for the R value.

UE
G (RE) = −G

mME

RE

For a given initial speed vi at the Earth’s surface where ri = RE we have the
total energy conserved at any later distance r:

E = Ei =
1

2
mv2

i − G
mME

RE

=
1

2
mv2

− G
mME

r
= E( arbitrary distance r)

To get the maximum distance rmax we set the “final” speed equal to 0. This
then gives us the expression for rmax

1

rmax

=
1

GmME

(
1

2
mv2

i − G
mME

RE

)

Now suppose we want the mass to travel infinitely far away for the Earth, so
then 1/rmax = 0. Then the expression above in parenthesis must also be zero:

(
1

2
mv2

i − G
mME

RE

) = 0 =⇒ vi(rmax = ∞) ≡ vesc =

√

√

√

√

2GME

RE

Objects with a speed vesc at the Earth’s surface will travel to infinity and never
return. Obviously, you can substitute for any other planet or even the Sun to
get their escape speed. The concept of escape speed is critical to understand
why the moon has no atmosphere, why the Earth has no hydrogen or helium
in its atmosphere, and why the outer heavy planets all contain hydrogen and
helium as their most abundant elements.
For the Earth vesc = 1.12 × 104 m/s, which is about 6.9 miles/second. The
magnitude of the escape velocity is crucial for a planet to retain an atmosphere.
The escape velocity for Mars is about half that of the Earth, and Mars has much
less of an atmosphere compared to Earth.
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The Ultimate in Escape Speed: The BLACK HOLE
According to relativity, the fastest speed anything can have is the speed of
light c. Nothing, not even light, can go faster then c. So what happens when
the escape speed becomes bigger than the speed of light? What you have then is
something called a Black Hole ! This is an object so massive, and so compact,
that nothing can escape from it not even light itself. So you can’t see it, but it’s
there. And if you get to close to it, then you will never escape yourself.
Do Black Holes exists? Most physicists think so. It is believe that Stars with
a mass several times that of the Sun will eventually explode into a ”Super-nova”
and leave behind an incredibly dense core. For example, the core might be the
mass of the Earth and the size of a dime. The only evidence for a Black Hole
would be if another object is too close, like a binary star companion, and one
sees the companion gradually consumed by the Black Hole.
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Artificial Satellites in Earth Orbit
Gravity Force at Radial Distance r From Earth’s Center
An artificial satellite can be in orbit at a distance r from the Earth’s center.
Typically we quote the altitude h above the Earth’s surface which is RE away
from the Earth’s center.
The gravity force at altitude h is then

FG(RE + h) = G
msME

(RE + h)2

where RE = 6.38 × 106 m, ME = 5.97 × 1024 kg, and ms is the mass of the
satellite.
For a satellite in circular orbit, the required centripetal force is

Fcentripetal =
msv

2

r
=

msv
2

RE + h

Fcentripetal = FG(RE + h) = G
msME

(RE + h)2
=

msv
2

RE + h

Speed and Orbital Period of an Earth Satellite
The speed of an Earth satallite at altitute h can be now obtained as

v(h) =

√

√

√

√

GME

RE + h

This speed depends only on the altitude h, and not on the mass of the satellite.
So when an astronaut leaves the Space Shuttle for a “space walk” the astronaut
is still traveling in orbit with the same speed as the space shuttle. For a satellite
or space shuttle at altitude 300 km in circular orbit, the speed is

v(h = 3 × 105 m) = 7.72 × 103 m/s

The oribtal time T is the circumfrence 2πr divided by the speed

T (h) =
2πr

v
=

2π(RE + h)

v(h)
= 2π(RE + h)

√

√

√

√

RE + h

GME

Again, with h = 300 meters, we can calculate the orbital time T (300 m) =
5440 s, or about 91 minutes. Satellites in these so-called “near-Earth” orbits
typically take one and one-half hours per orbit. On the other hand, satellites
much further away, about 22,500 miles, are in synchronous orbits, meaning T =
24hours. Can calculate the altitude for a synchronous orbit?
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Kepler’s Three Laws
Before Newton formulated his law of universal gravitation, the astronomer Ke-
pler had worked out three laws of planetary motion. As far as Kepler was
concerned, these were three independent laws. However, Newton showed that
all three of Kepler’s Laws could be derived from Newton’s one law of gravity. So
Newton accomplished the first “unification” in physics.

Kepler’s First Law
Each planet moves in an elliptical orbit with the Sun at one focus

Actually, all the planets exceptformer planet Pluto, have very near circular or-
bits. The elliptical orbit can be shown to be the general solution to Newton’s
gravity law with an inverse square dependence.

Kepler’s Second Law
The radius vector from the Sun to a planet sweeps out equal areas in equal

amounts of time.

This is know as the “equal areas” law. In fact, it is simply a consequence of the
fact that the gravity force is a central force. It exerts no torque on the planet.
Then it can be shown that the areas swept out are just proportional to the
angular momentum which is conserved. The equal areas law does not depend
on the inverse square dependence.

Kepler’s Third Law
The square of the period T of a planet’s orbit is proportional to the cube of its

semi-major axis.

This was originally thought to be some magical property of the planets (“har-
mony of the spheres” was the phrase used in Kepler’s time) but actually it’s an
extremely simple consequence of the inverse square force of gravity law.
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Kepler’s Third Law Proved
It is very easy to prove Kepler’s Third Law for circular orbits
The square of the period T of a planet’s orbit is proportional to the cube of its

radius R.

We take the mass of the Sun to be MS and the mass of the planet to be mp.
The orbital radius is taken as R. Newton’s gravity law states

F = G
MSmp

R2

However, this gravity force is also the centripetal force, just as we saw for the
moon. And centripetal forces have simple expressions in terms of the speeds:

F =
mpv

2

R
Now the speed v is just the circumference of the orbit divided by the time of the
orbit

v =
2πR

T
So equate everything concerning the force:

F = G
MSmp

R2
=

mpv
2

R
=

mp4π
2R2

T 2

The mp term cancels out and we are left with

G
MS

R2
=

4π2R2

T 2

T 2 =
4π2R3

GMS

= KSR3

KS ≡
4π2

GMS

For planetary orbits the cube of the Radius

Is proportional to the square of the Period

The square of the time is proportional to the cube of the radius. Moreover, once
you have found out what G value is, then you can determine from KS what the
mass of the Sun is.
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CHAPTER 13: Oscillatory Motion
Consider a spring lying in a horizontal position. A mass is attached to the spring,
and the spring is stretched and then released. In the absence of friction the mass
will oscillate along the horizontal axis. That means the position x of the mass
will go from a maximum positive displacement, to zero displacement, and then
to a maximum negative displacement, and then repeat the cycle. This position
function x(t) obeys the Simple Harmonic Motion equation (SHM):

Simple Harmonic Motion x(t) = A cos (ωt + φ) (13.13)

The position function x(t) = A cos (ωt + φ) has three parameters:
A ≡ is the amplitude of the motion

ω(= 2πf) ≡ is the angular frequency of the motion
φ ≡ is the phase constant of the motion

The time for one complete cycle of the oscillation is called the period T.
The number of cycles per second is called the frequency f. The frequency f is
the inverse of the period T

frequency f = 1/T

There are two simple systems, pendulum and spring for which you should now
the equation for their periods in terms of the physical parameters:

Period for a Spring of a given mass and force constant: T = 2π

√

m

k

Period for a Pendulum of a given length: T = 2π

√

√

√

√

L

g
(13.34)

The velocity and the acceleration of the mass in oscillatory motion can be cal-
culated directly from the position function x(t) = A cos (ωt + φ) by taking the
first and the second time derivatives respectively:

v(t) =
dx

dt
=

d(A cos (ωt + φ))

dt
= −ωA sin (ωt + φ) (13.15)

a(t) =
dv

dt
=

d(−ωA sin (ωt + φ))

dt
= −ω2A cos (ωt + φ) (13.16)
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Oscillatory or Simple Harmonic Motion
The general equation for simple harmonic motion is given by

x(t) (or y(t) ) = A cos (ωt + φ) (13.13)

This equation describes the motion of a mass attached to a spring (either hori-
zontally or vertically), or the motion of a pendulum.
The purpose of this chapter is to study this type of motion, and in particular to
become familiar with the concepts of Amplitude, frequency, and phase.

Take a specific case of a spring which is stretched to an initial distance x0, and
an attached mass is also given an initial speed v0. We will see that the constants
A and φ can be expressed in terms of the two initial conditions x0 and v0.
We first substitute in the position and the velocity equations at time t = 0

x(t = 0) = A cos (ω · 0 + φ) = A cos φ = x0

v(t = 0) = −ωA sin (ω · 0 + φ) = −ωA sin φ = v0

Now divide the second equation by the first in order to get an equation for the
phase angle by itself in terms of x0 and v0

tan φ = −
v0

ωx0

With a little more work, you can substitute this expression for tan φ into one of
the two other equations and obtain an expression for the amplitude A just in
terms of x0, v0, and ω

A =

√

√

√

√x2
0 +

(

v0

ω

)2

Special case where v0 = 0 (no initial velocity)

tan φ = 0 =⇒ φ = 0

A =
√

x2
0 + 0 =⇒ A = x0

So this special case gives a very simple Simple Harmonic Motion equation

x(t) = x0 cos ωt (only when v0 = 0)
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Worked example of Simple Harmonic Motion
A particle oscillates in simple harmonic motion according to the following posi-
tion equation where t is in seconds and x is in meters:

x(t) = 4.0 cos (πt +
π

4
)

Here the phase angle φ is given in radians instead of the more common degrees.
(Recall that π radians is equal to 180o, so π/4 = 45o.)
Determine the amplitude, frequency (and angular frequency), and period of the
motion. Determine the position, velocity, and acceleration of the particle at
t = 1 second.

The amplitude A and the angular frequency ω can be determined by simply
comparing this equation to the general equation x(t) = A cos (ωt + φ). You will
see right away that in this example A = 4.0 meters, and ω = π radians/second.
To get the (plain) frequency f , and then the period T requires that you recall
the relation between the angular frequency ω and f

ω = 2πf =⇒ f =
ω

2π
(13.11)

So in this case f = π/(2π) = 0.5 cycles per second.
The period is given just as the inverse of the (plain) frequency f

T =
1

f
=

1

0.5 s−1
= 2.0 s

To get the position and velocity at t = 1 second, just substitute in position and
the velocity equations of motion:

x(t = 1) = 4.0 cos (π · 1 +
π

4
) = −2.83 m

v(t = 1) = −(4.0)(π)(sin (π · 1 +
π

4
)) = 8.89 m/s

a(t = 1) = −(4.0)(π)2(cos (π · 1 +
π

4
)) = 27.9 m/s2
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Newton’s Second Law and Simple Harmonic Motion

Up to now we have been working with the position equation

x(t) = A cos (ωt + φ) (13.13)

for oscillatory motion, and have simply stated that this is the correct equation.
Now we will prove that is the correct for the case of a mass attached to a spring.
This we will do using Newton’s second law of motion, the force equation
When a spring is stretched a distance x where x > 0, then there will be a force
in the negative x direction. Such a force is called a Restoring Force because
it tends to restore the spring back to its original configuration. We have already
seen in Chapter 7 that the magnitude of the force depends upon the spring
constant k

Fspring = −kx (13.3)

This force is exerted on the attached mass m, and by Newton’s second law we
have

F = ma = −kx =⇒ a = −
k

m
x (13.4)

Like the force itself, the acceleration is linearly proportional and opposite in sign
to the displacement from the equilibrium position.
This equation can be re–written using the calculus definition of acceleration

a =
d2x

dt2
= −

k

m
x

We now symbolize the ratio k/m by the symbol ω2, and then obtain:

ω ≡

√

√

√

√

k

m
=⇒

d2x

dt2
= −ω2x
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Newton’s Second Law and Simple Harmonic Motion

We have derived an equation for the position function x(t):

d2x

dt2
= −ω2x

This equation states that we need a function x(t) such that when we take two
derivatives with respect to t, then we will get back the negative of the original
function x(t) multiplied by ω2. Very simply, Eq. 13.3 is exactly that function,
and the prove is just do it.
Start with Eq. 13.13, and then take two time derivatives:

x(t) = A cos (ωt + φ) (13.13)

d

dt
x(t) = −Aω sin (ωt + φ)

d2

dt
x(t) = −Aω2 cos (ωt + φ) = −ω2x(t)

In general, whenever one has a restoring force equation coming in Newton’s
second law, then one will always find the solution to be the position function is
just simple harmonic motion.
Note that the constants A and φ are completely arbitrary. Any pair on numbers
A and φ will satisfy the restoring force equation. In order to fix A and φ
to particular values, on must specify the initial conditions, namely the initial
position (x0), and the initial velocity (v0) as we have done previously.
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The Mass–Spring System in Simple Harmonic Motion
The general solution for simple harmonic motion is

x(t) = A cos (ωt + φ) (13.13)

where for the spring we remember that

ω2 =
k

m
=⇒ ω =

√

√

√

√

k

m
(13.9)

Now in general ω = 2πf so

ω = 2πf =

√

√

√

√

k

m
=⇒ f =

1

2π

√

√

√

√

k

m
(13.11)

Finally one can determine the period T of the motion in terms of k and m since
T = 1/f

T =
1

f
= 2π

√

m

k
(13.12)

Worked Example A car of mass 1300 kg has four shock absorber springs each
with a force constant of 20,000 N/m. If two people riding in the car have a
combined mass of 160 kg, what is the frequency f of the vibration of the car
when it is driven over a pothole?
Assume that the total mass (=1460 kg) is equally distributed over the four
shocks, so each shock absorber has a mass of 325 kg attached to it. The solution
is just to use Eq. 13.11 to solve for f

f =
1

2π

√

√

√

√

k

m
=

1

2π

√

√

√

√

20, 000

365
= 1.18 Hz

The abbreviation Hz (after Heinrich Hertz) means 1 cycle/second. The period
of the vibration T is simply given as the inverse of the frequency

T =
1

f
=

1

1.18
= 1.70 seconds


