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CHAPTER 13: Oscillatory Motion
Consider a spring lying in a horizontal position. A mass is attached to the spring,
and the spring is stretched and then released. In the absence of friction the mass
will oscillate along the horizontal axis. That means the position x of the mass
will go from a maximum positive displacement, to zero displacement, and then
to a maximum negative displacement, and then repeat the cycle. This position
function x(t) obeys the Simple Harmonic Motion equation (SHM):

Simple Harmonic Motion x(t) = A cos (ωt + φ) (13.13)

The position function x(t) = A cos (ωt + φ) has three parameters:
A ≡ is the amplitude of the motion

ω(= 2πf) ≡ is the angular frequency of the motion
φ ≡ is the phase constant of the motion

The time for one complete cycle of the oscillation is called the period T.
The number of cycles per second is called the frequency f. The frequency f is
the inverse of the period T

frequency f = 1/T

There are two simple systems, pendulum and spring for which you should now
the equation for their periods in terms of the physical parameters:

Period for a Spring of a given mass and force constant: T = 2π
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Period for a Pendulum of a given length: T = 2π
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(13.34)

The velocity and the acceleration of the mass in oscillatory motion can be cal-
culated directly from the position function x(t) = A cos (ωt + φ) by taking the
first and the second time derivatives respectively:

v(t) =
dx

dt
=

d(A cos (ωt + φ))

dt
= −ωA sin (ωt + φ) (13.15)

a(t) =
dv

dt
=

d(−ωA sin (ωt + φ))

dt
= −ω2A cos (ωt + φ) (13.16)
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Oscillatory or Simple Harmonic Motion
We will prove shortly that the general equation for simple harmonic motion is
given by

x(t) (or y(t) ) = A cos (ωt + φ) (13.13)

This equation describes the motion of a mass attached to a spring (either hori-
zontally or vertically), or the motion of a pendulum.
The purpose of this chapter is to study this type of motion, and in particular to
become familiar with the concepts of Amplitude, Frequency, and Phase.

Take a specific case of a spring which is stretched to an initial distance x0, and
an attached mass is also given an initial speed v0. We will see that the constants
A and φ can be expressed in terms of the two initial conditions x0 and v0.
We first substitute in the position and the velocity equations at time t = 0

x(t = 0) = A cos (ω · 0 + φ) = A cos φ = x0

v(t = 0) = −ωA sin (ω · 0 + φ) = −ωA sin φ = v0

Now divide the second equation by the first in order to get an equation for the
phase angle by itself in terms of x0 and v0

tan φ = −
v0

ωx0

With a little more work, you can substitute this expression for tan φ into one of
the two other equations and obtain an expression for the amplitude A just in
terms of x0, v0, and ω

A =

√

√

√

√x2
0 +

(

v0

ω

)

2

Special case where v0 = 0 (no initial velocity)

tan φ = 0 =⇒ φ = 0

A =
√

x2
0 + 0 =⇒ A = x0

So this special case gives a very simple Simple Harmonic Motion equation

x(t) = x0 cos ωt (only when v0 = 0)
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Worked example of Simple Harmonic Motion
A particle oscillates in simple harmonic motion according to the following posi-
tion equation where t is in seconds and x is in meters:

x(t) = 4.0 cos (πt +
π

4
)

Here the phase angle φ is given in radians instead of the more common degrees.
(Recall that π radians is equal to 180o, so π/4 = 45o.)
Determine the amplitude, frequency (and angular frequency), and period of the
motion. Determine the position, velocity, and acceleration of the particle at
t = 1 second.

The amplitude A and the angular frequency ω can be determined by simply
comparing this equation to the general equation x(t) = A cos (ωt + φ). You will
see right away that in this example A = 4.0 meters, and ω = π radians/second.
To get the (plain) frequency f , and then the period T requires that you recall
the relation between the angular frequency ω and f

ω = 2πf =⇒ f =
ω

2π
(13.11)

So in this case f = π/(2π) = 0.5 cycles per second.
The period is given just as the inverse of the (plain) frequency f

T =
1

f
=

1

0.5 s−1
= 2.0 s

To get the position and velocity at t = 1 second, just substitute in position and
the velocity equations of motion:

x(t = 1) = 4.0 cos (π · 1 +
π

4
) = −2.83 m

v(t = 1) = −(4.0)(π)(sin (π · 1 +
π

4
)) = 8.89 m/s

a(t = 1) = −(4.0)(π)2(cos (π · 1 +
π

4
)) = 27.9 m/s2
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Newton’s Second Law and Simple Harmonic Motion

Up to now we have been working with the position equation

x(t) = A cos (ωt + φ) (13.13)

for oscillatory motion, and have simply stated that this is the correct equation.
Now we will prove that is the correct for the case of a mass attached to a spring.
This we will do using Newton’s second law of motion, the force equation
When a spring is stretched a distance x from its unstretched position where
x > 0, then there will be a force in the negative x direction. Such a force is
called a Restoring Force because it tends to restore the spring back to its
original configuration. We have already seen in Chapter 6 that the magnitude of
the force from a stretched or compressed spring depends upon the spring force
constant k

Fspring = −kx (13.3)

The negative sign in this equation is the key feature of a Restoring Force. Such
a force acts to return the spring to its unstretched length. This force will be
exerted on a mass m which is attached to the spring. By Newton’s second law
we have

F = ma = −kx =⇒ a = −
k

m
x (13.4)

Like the force itself, the acceleration is linearly proportional and opposite in sign
to the displacement from the equilibrium position.
This equation can be re–written using the calculus definition of acceleration

a =
d2x

dt2
= −

k

m
x

We now symbolize the ratio k/m by the symbol ω2, and then obtain:

Angular Frequency: ω ≡

√

√

√

√

k

m

=⇒ a =
d2x

dt2
= −ω2x

The angular frequency ω =
√

k/m is an intrinsic characteristic of the mass-spring
system. This means that the angular frequency for oscillation does not depend
on any initial conditions of the motion.
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Newton’s Second Law and Simple Harmonic Motion

We have derived an equation for the position function x(t):

d2x

dt2
= −ω2x

This equation states that we need a function x(t) such that when we take two
derivatives with respect to t, then we will get back the negative of the original
function x(t) multiplied by ω2. Very simply, Eq. 13.3 is exactly that function,
and the proof is simply just do it.
Start with Eq. 13.13, and then take two time derivatives:

x(t) = A cos (ωt + φ) (13.13)

d

dt
x(t) = −Aω sin (ωt + φ)

d2

dt
x(t) = −Aω2 cos (ωt + φ) = −ω2x(t)

In general, whenever one has a restoring force equation coming in Newton’s
second law, then one will always find the solution to be the position function is
just simple harmonic motion.
Note that the constants A and φ are completely arbitrary. Any pair on numbers
A and φ will satisfy the restoring force equation. In order to fix A and φ
to particular values, one must specify the initial conditions, namely the initial
position (x0), and the initial velocity (v0) as we have done previously:

tan φ = −
v0

ωx0

A =

√

√

√

√x2
0 +

(

v0

ω

)

2
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REVIEW: The Mass–Spring System in Simple Harmonic Motion
The general solution for simple harmonic motion is

x(t) = A cos (ωt + φ) (13.13)

where for the spring we remember that

ω2 =
k

m
=⇒ ω =

√

√

√

√

k

m
(13.9)

Now in general ω = 2πf so

ω = 2πf =

√

√

√

√

k

m
=⇒ f =

1

2π

√

√

√

√

k

m
(13.11)

Finally one can determine the period T of the motion in terms of k and m since
T = 1/f

T =
1

f
= 2π

√

m

k
(13.12)

Worked Example
A car of mass 1300 kg has four shock absorber springs each with a force constant
of 20,000 N/m. If two people riding in the car have a combined mass of 160 kg,
what is the frequency f of the vibration of the car when it is driven over a
pothole?
Assume that the total mass (=1460 kg) is equally distributed over the four
shocks, so each shock absorber has a mass of 325 kg attached to it. The solution
is just to use Eq. 13.11 to solve for f

f =
1

2π

√

√

√

√

k

m
=

1

2π

√

√

√

√

20, 000

365
= 1.18 Hz

The abbreviation Hz (after Heinrich Hertz) means 1 cycle/second. The period
of the vibration T is simply given as the inverse of the frequency

T =
1

f
=

1

1.18
= 1.70 seconds
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Kinetic and Potential Energy in Simple Harmonic Motion
Kinetic Energy of a Mass in Oscillation
We have seen that the velocity in simple harmonic motion is continuously chang-
ing going from maximum to minimum to maximum and so on. Hence the kinetic
energy must also be changing continuously

v(t) =
d

dt
x(t) = −xmω sin (ωt + φ)

Given the mass m, then the kinetic energy can always be calculated from the
velocity v

K =
1

2
mv2 =

1

2
mω2x2

m sin2 (ωt + φ)

Potential Energy of a Mass in Oscillation
Similarly the potential energy at any time may be calculated straight from the
square of the position function, since for a spring the potential energy is given
by U(x) = (1/2)kx2

U(x) =
1

2
kx2 =

1

2
k

(

xm cos (ωt + φ)

)

2

=
1

2
kx2

m cos2 (ωt + φ)

Total Mechanical Energy of a Mass in Oscillation
Since we have assumed that there is no friction, then the total mechanical energy
(Etotal = K + U) must be a constant

Etotal = K + U =
1

2
mω2x2

m sin2 (ωt + φ) +
1

2
kx2

m cos2 (ωt + φ)

Since sin2 θ + cos2 θ = 1, then we have simply

Etotal =
1

2
kx2

m

The total mechanical energy for a mass in simple harmonic motion is constant,

and scales as the square of the amplitude of the motion.

In simple harmonic motion, the total energy is being exchanged continuously
between the kinetic and the potential forms.
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The Pendulum as Simple Harmonic Motion

Exact Differential Equation of Motion for a Pendulum
We have already seen the pendulum motion just in terms of the interchange of
kinetic and potential energies in the previous chapters. Now we study the motion
of the pendulum from the kinematics point of few. We want to find expression
for the position and the velocity as functions of time.
Consider the mass m at the end of the string L to be displaced by the angle θ.
There will be a net force Ftangential on the mass perpendicular to the direction
of the string. The force is just mg sin θ (exactly like the weight force down the
inclined plane). So we can write

Ftangential = −mg sin θ = matangential = m
d2s

dt2

Here s is the tangential displacement along a circular arc: s = Lθ (where θ is in
radians). So now Newton’s second law is written as

F = m
d2s

dt2
= mL

d2θ

dt2
= −mg sin θ

d2θ

dt2
= −

g

L
sin θ

Approximate Differential Equation of Motion for a Pendulum
The above differential equation of motion is not quite a restoring force equation.
However, we restrict ourselves to the cases where the angular displacement θ
is small such that sin θ ≈ θ, and where θ is being expressed in radians (not
degrees). In that case we have

d2θ

dt2
= −

g

L
θ

This looks just like the spring equation, where now ω2 = g/L instead of ω2 =
k/m. By analogy then, one can write the period of a pendulum as

T = 2π

√

√

√

√

L

g
(independent of the mass !)



Lecture 17: (Chapter 13) Oscillations and Simple Harmonic Motion 9

The Physical Pendulum

Besides the Simple Pendulum there is also the not–so–simple pendulum which
is normally called the Physical Pendulum. This is an extended object (rigid
body) instead of a point mass which is rotating because of a torque which occurs
when the body is displaced from equilibrium. See Figure 13.23 on page 438.
The center-of-mass of the rigid body is at a distance d from a pivot point. The
rigid body has a moment of inertia I about an axis through the pivot point. The
line from the pivot point to the center-of-mass is at some angle θ with respect to
the vertical direction. The weight vector of the rigid body, m~g can be resolved
into a component mg cos θ along the line to the pivot point, and a perpendicular
component mg sin θ. It is this perpendicular component which exerts the torque
about the pivot point. The basic torque equation τ = Iα becomes (Fig. 13.23)

−(mg sin θ)d = I
d2θ

dt2

Essentially the length d in a physical pendulum replaces the string lenght l of
the simple pendulum.
This torque is restoring (negative sign) because it tends to push the rigid body
back to equilibrium, that is to reduce angular displacment. We again make the
small angle approximation that sin θ ≈ θ (in radians) to get

d2θ

dt2
= −

mgd

I
θ = −ω2θ

We recognize this as another simple harmonic motion equation for which

ω =

√

√

√

√

mgd

I

and the period is given as usual by

T =
2π

ω
= 2π

√

√

√

√

I

mgd

The textbook has an interesting example of leg of a Tyrannosaurus Rex as a
physical pendulum on pages 439–440. You can get an approximate value for the
walking speed of a T. Rex as about 4 miles/hour, the same as a human being.
Whether T. Rex could run as fast as a jeep, as in the movie Jurassic Park, is
not discussed.
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Chapter 14: Fluid Mechanics (Density, Pressure, and Pascal’s Law)

Our study of Mechanics is almost complete. There remains just the subject of
Fluid Mechanics which applies specifically to gases and liquids for which both
the concepts of pressure and density make sense.
We have already seen in Chapter 1 that the density of an object (solid, liquid,
or gas) is the ratio of the mass of the object divided by the volume the object
occupies

ρ =
m

V
(14.1)

For a tabulation of densities, see Table 14.1 on page 457.

The second quantity of importance in fluid mechanics is pressure. Pressure is
the force per unit area that a gas or a liquid exerts on the surface of its confining
volume. Very simply, pressure is the normal weight or perpendicular per unit
area of a fluid or a gas

P ≡
F ⊥

A
(14.3)

Pressure is measured in units of Pascals (Pa) where 1 Pa is 1 N/m2. The most
important feature about Pressure in a liquid or a gas is that the amount of the
pressure varies with the depth of the liquid or the gas. The pressure difference
between two different levels y1 and y2 of a liquid is given by

p2 − p1 = −ρg(y2 − y1) (14.5)

p(h) = pair + ρgh (Pressure at the bottom of a liquid open to air) (14.8)

An important consequence of these equations is that the pressure is the same

for all points of equal depth in any liquid.

Pascal’s Law states that a change in pressure on a fluid is transmitted equally
to all points in the fluid and the enclosing surface of the container. This is the
principle of the hydraulic press.
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Variation of Pressure With Depth

Anyone who has dived into a swimming pool, or the ocean, knows that the
pressure of the water increases with the depth below the surface. This is true
of all liquids, and also of the atmosphere itself. The accumulated weight of the
water (or the air) above a person is what is responsible for the pressure exerted at
a certain depth. This can be deduced from just the translational equilibrium
in the y direction. Consider a small, cubical element of fluid in a container, with
a cross sectional area A, and a differential height dy. That cubical element has a
volume dV = Ady, and contains a differential element of mass dm. That volume
element is not moving, so:

∑

Fy = 0 = Force acting up − Force acting down

∑

Fy = 0 = (P + dP )A − dW − PA = AdP − g(dm) = AdP − gρAdy

=⇒
dP

dy
= +ρg

The convention here is that the depth y is measured from the surface of the
water, and y increases as you go deeper into the water. So the above equation
says that the pressure increases with increasing depth. One can integrate the
above derivative equation very simply to get

P (y) = ρgy + constant

This equations shows clearly that pressure is the same when y is the same. The
constant of integration can be determined by knowing the pressure at y = 0.
If the container is open to the atmosphere, then that pressure P (y = 0) = Pa

where Pa is the atmospheric pressure. This gives

P (y) = ρgy + Pa (Pa = 1.01 x 105 Pa or 14.7 lb/in2) (14.8)

The pressure at at depth y is equal to the atmospheric pressure plus
an amount ρgy (the weight of a column of unit area with height y).
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The Variation of Pressure with Depth

Example of a hydraulic lift
A hydraulic lift consists of a small diameter piston of radius 5 cm, and a large
diameter piston of radius 15 cm. How much force must be exerted on the small
diameter piston in order to support the weight of a car at 13,300 N ?
The pressure (F/A) on both sides of the hydraulic lift must be the same at the
same height y. This lead to

F1

A1

=
F2

A2

=⇒ F1 = F2

(

A1

A2

)

F1 = 13, 300

(

π(0.05)2

π(0.15)2

)

= 1.48 x 103 N

There is a factor of 9 gain in lifting power by means of the hydraulic press. The
same force multiplication occurs in the braking system of cars which use brake
fluid to transmit the force from the brake pedal.

Second Example
Calculate the pressure at an ocean depth of 1000 m, using the density of water
as 1.0 x 103 kg/m3.
From Eq. 14.8 we have

P (y = 1000) = ρg(1000) + 1.01 x 105 = 9.90 x 106 Pa

This pressure is 100 times that of normal atmospheric pressure. Now you know
why submarines don’t have portholes.


