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Third Exam Chapter Study Guide

Chapter 9

1) Kinematic definitions for rotational variables θ, ω, and α; three kinematic
equations relating rotational variables for constant acceleration

2) Constrained, no-slip linear motion and rotational motion

3) Computation of moment of inertia for discrete masses, and kinetic energy

4) Don’t need to know sections 9.5 and 9.6 (parallel axis, calculus for I)

Chapter 10

1) Computation and use of torques to compute rotational acceleration

2) Rolling motion and coupled particle-rigid body motion

3) Angular momentum-energy changes for angular momentum conservation

4) Don’t need to know section 10.6 (gyroscopes)

Chapter 11

1) Solving translational and rotational equilibrium situations, with friction

2) Center-of-gravity calculations and movement/non-movements of cg

3) Use of stress and strain for linear and volume objects, and liquids

4) Don’t need to know section 11.5 (elasticity and plasticity)

Chapter 12

1) Use of Newton’s Law of Gravity and Kepler’s Three Laws

2) Calculations of kinetic and potential energies with Universal gravity

3) Satellite motion and motion of the planets

4) Definition of black-hole and Schwarzchild radius

5) Don’t need to know proof of spherical mass result for gravity

6) Don’t need to know section 12.7 (effect of Earth’s rotation)
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REVIEW (Ch. 13): The Pendulum as Simple Harmonic Motion

Exact Differential Equation of Motion for a Pendulum
We have already seen the pendulum motion just in terms of the interchange of
kinetic and potential energies in the previous chapters. Now we study the motion
of the pendulum from the kinematics point of few. We want to find expression
for the position and the velocity as functions of time.
Consider the mass m at the end of the string L to be displaced by the angle θ.
There will be a net force Ftangential on the mass perpendicular to the direction
of the string. The force is just mg sin θ (exactly like the weight force down the
inclined plane). So we can write

Ftangential = −mg sin θ = matangential = m
d2s

dt2

Here s is the tangential displacement along a circular arc: s = Lθ (where θ is in
radians). So now Newton’s second law is written as

F = m
d2s

dt2
= cl

d2θ

dt2
= −mg sin θ

d2θ

dt2
= −

g

L
sin θ

Approximate Differential Equation of Motion for a Pendulum
The above differential equation of motion is not quite a restoring force equation.
However, we restrict ourselves to the cases where the angular displacement θ

is small such that sin θ ≈ θ, and where θ is being expressed in radians (not
degrees). In that case we have

d2θ

dt2
= −

g

L
θ

This looks just like the spring equation, where now ω2 = g/L instead of ω2 =
k/m. By analogy then, one can write the period of a pendulum as

T = 2π

√

√

√

√

L

g
(independent of the mass !)
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(Chapter 13) The Physical Pendulum

Besides the Simple Pendulum there is also the not–so–simple pendulum which
is normally called the Physical Pendulum. This is an extended object (rigid
body) instead of a point mass which is rotating because of a torque which occurs
when the body is displaced from equilibrium. See Figure 13.23 on page 438.
The center-of-mass of the rigid body is at a distance d from a pivot point. The
rigid body has a moment of inertia I about an axis through the pivot point. The
line from the pivot point to the center-of-mass is at some angle θ with respect to
the vertical direction. The weight vector of the rigid body, m~g can be resolved
into a component mg cos θ along the line to the pivot point, and a perpendicular
component mg sin θ. It is this perpendicular component which exerts the torque
about the pivot point. The basic torque equation τ = Iα becomes (Fig. 13.23)

−(mg sin θ)d = I
d2θ

dt2

Essentially the length d in a physical pendulum replaces the string length l of
the simple pendulum.
This torque is restoring (negative sign) because it tends to push the rigid body
back to equilibrium, that is to reduce angular displacements. We again make
the small angle approximation that sin θ ≈ θ (in radians) to get

d2θ

dt2
= −

mgd

I
θ = −ω2θ

We recognize this as another simple harmonic motion equation for which

ω =

√

√

√

√

mgd

I

and the period is given as usual by

T =
2π

ω
= 2π

√

√

√

√

I

mgd

The textbook has an interesting example of leg of a Tyrannosaurus Rex as a
physical pendulum on pages 439–440. You can get an approximate value for the
walking speed of a T. Rex as about 4 miles/hour, the same as a human being.
Whether T. Rex could run as fast as a jeep, as in the movie Jurassic Park, is
not discussed.
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Chap. 14: Fluid Mechanics (Density, Pressure, and Pascal’s Law)

Our study of Mechanics is almost complete. There remains just the subject of
Fluid Mechanics which applies specifically to gases and liquids for which both
the concepts of pressure and density make sense.
We have already seen in Chapter 1 that the density of an object (solid, liquid,
or gas) is the ratio of the mass of the object divided by the volume the object
occupies

ρ =
m

V
(14.1)

For a tabulation of densities, see Table 14.1 on page 457.

The second quantity of importance in fluid mechanics is pressure. Pressure is
the force per unit area that a gas or a liquid exerts on the surface of its confining
volume. Very simply, pressure is the normal weight or perpendicular per unit
area of a fluid or a gas

P ≡
F ⊥
A

(14.3)

Pressure is measured in units of Pascals (Pa) where 1 Pa is 1 N/m2. The most
important feature about Pressure in a liquid or a gas is that the amount of the
pressure varies with the depth of the liquid or the gas. The pressure difference
between two different levels y1 and y2 of a liquid is given by

p2 − p1 = −ρg(y2 − y1) (14.5)

p(h) = pair + ρgh (Pressure at the bottom of a liquid open to air) (14.8)

An important consequence of these equations is that the pressure is the same

for all points of equal depth in any liquid.

Pascal’s Law states that a change in pressure on a fluid is transmitted equally
to all points in the fluid and the enclosing surface of the container. This is the
principle of the hydraulic press.
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Variation of Pressure With Depth

Anyone who has dived into a swimming pool, or the ocean, knows that the
pressure of the water increases with the depth below the surface. This is true
of all liquids, and also of the atmosphere itself. The accumulated weight of the
water (or the air) above a person is what is responsible for the pressure exerted at
a certain depth. This can be deduced from just the translational equilibrium
in the y direction. Consider a small, cubical element of fluid in a container, with
a cross sectional area A, and a differential height dy. That cubical element has a
volume dV = Ady, and contains a differential element of mass dm. That volume
element is not moving, so:

∑

Fy = 0 = Force acting up − Force acting down

∑

Fy = 0 = (P + dP )A − dW − PA = AdP − g(dm) = AdP − gρAdy

=⇒
dP

dy
= +ρg

The convention here is that the depth y is measured from the surface of the
water, and y increases as you go deeper into the water. So the above equation
says that the pressure increases with increasing depth. One can integrate the
above derivative equation very simply to get

P (y) = ρgy + constant

This equations shows clearly that pressure is the same when y is the same. The
constant of integration can be determined by knowing the pressure at y = 0.
If the container is open to the atmosphere, then that pressure P (y = 0) = Pa

where Pa is the atmospheric pressure. This gives

P (y) = ρgy + Pa (Pa = 1.01 x 105 Pa or 14.7 lb/in2) (14.8)

The pressure at at depth y is equal to the atmospheric pressure plus
an amount ρgy (the weight of a column of unit area with height y).
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The Variation of Pressure with Depth

Example of a hydraulic lift
A hydraulic lift consists of a small diameter piston of radius 5 cm, and a large
diameter piston of radius 15 cm. How much force must be exerted on the small
diameter piston in order to support the weight of a car at 13,300 N ?
The pressure (F/A) on both sides of the hydraulic lift must be the same at the
same height y. This lead to

F1

A1

=
F2

A2

=⇒ F1 = F2

(

A1

A2

)

F1 = 13, 300

(

π(0.05)2

π(0.15)2

)

= 1.48 x 103 N

There is a factor of 9 gain in lifting power by means of the hydraulic press. The
same force multiplication occurs in the braking system of cars which use brake
fluid to transmit the force from the brake pedal.

Second Example
Calculate the pressure at an ocean depth of 1000 m, using the density of water
as 1.0 x 103 kg/m3.
From Eq. 14.8 we have

P (y = 1000) = ρg(1000) + 1.01 x 105 = 9.90 x 106 Pa

This pressure is 100 times that of normal atmospheric pressure. Now you know
why submarines don’t have portholes.
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Buoyant Forces and Archimedes’ Principle

To continue the swimming pool line of reasoning, many people are able to float
in water. This is an example of buoyancy, the fact that objects immersed
in water weigh less (or nothing) compared to what they weigh out of water.
Archimedes’ principle states:

Any object completely or partially immersed in a fluid is buoyed up by a force

equal to the weight of the fluid displaced by the volume occupied by the object.

Worked example
A piece of aluminum (ρ = 2.7 x 103 kg/m3) with a mass of 1.0 kg is completely
submerged in a container of water. What is the apparent weight of this piece of
aluminum ?
The normal weight of the aluminum would be W = mg = 1.0 · 9.8 = 9.8 N.
When immersed in water, part of that weight is counteracted by the upward
buoyant force of the water, B:

B = ρwater · g · Valuminum = ρwater · g ·
(

maluminum

ρaluminum

)

= 1 x 103 · 9.8 ·
(

1.0

2.7

)

B = 3.63 =⇒ Tapparent weight = W − B = 6.17 Newtons
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Fluid Dynamics: Equation of Continuity and Bernoulli’s Equation

Equations in Fluid Dynmaics
For moving incompressible fluids there are two important laws of fluid dynamics:

1) The Equation of Continuity, and

2) Bernoulli’s Equation.

These you have to know, and know how to use to solve problems.

The Equation of Continuity
The continuity equation derives directly from the incompressible nature of the
fluid. Suppose you have a pipe filled with a moving fluid. If you want to compute
the amount of mass moving by a point in the pipe, all you need to know is the
density ρ of the fluid, the cross sectional area A of the pipe, and the velocity v

of the fluid. Then the mass flow is given by ρ · A · v because

ρ · A · v = ρ · A ·
∆x

∆t
=

ρ∆V

∆t
=

∆m

∆t
(the “mass flow”)

If the fluid is truly incompressible, then the mass flow is the same at all points
in the pipe, and the density is the same at all points in the pipe:

ρA1v1 = ρA2v2 =⇒ A1v1 = A2v2 (the equation of continuity) (14.10)

Bernoulli’s Equation
Bernoulli’s equation is very powerful equation for moving, incompressible fluids,
and can be derived using the conservation of Mechanical Energy. The Bernoulli’s
Equation states that if you have a fluid moving in a pipe at point 1 with pressure
P1, speed v1, and height y1, and the fluid moves to point 2 with pressure P2,
speed v2, and height y2, then these six quantities are related as follows

P1 +
1

2
ρv2

1
+ ρgy1 = P2 +

1

2
ρv2

2
+ ρgy2 (Energy Conservation)

P +
1

2
ρv2 + ρgy = constant (Alternate form) (14.17)
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Using Bernoulli’s Equation: Venturi Tube and Torricelli’s Law

Worked Example: The Venturi Tube
A horizontal pipe with a constriction is called a Venturi Tube and is used to
measure flow velocities by measuring the pressure at two different cross sectional
areas of the pipe. Given two pressures P1 and P2 where the areas are A2 and A1

respectively, determine the flow velocity at point 2 in terms of these quantities
and the fluid density ρ.
First use Bernoulli’s law, and take the heights y1 = y2 = 0:

P1 +
1

2
ρv2

1
= P2 +

1

2
ρv2

2

Now substitute for one of the velocities, v1, by using the continuity equation:

A1v1 = A2v2 =⇒ v1 =
A2

A1

v2

=⇒ P1 +
1

2
ρ

(

A2

A1

v2

)

2

= P2 +
1

2
ρv2

2
=⇒ v2 = A1

√

√

√

√

√

2(P1 − P2)

ρ(A2
1 − A2

2)

Example Torricelli’s Law (speed of efflux)
A tank with a surface pressure P (at point 2) and a surface area A2 has a small
hole of area A1 << A2 at a distance of h below the surface. What is the velocity
of the escaping fluid which has density ρ ?

P2 +
1

2
ρv2

2
+ ρgh = P1 +

1

2
ρv2

1
and v2 =

A1

A2

v1 =⇒ v2 ≈ 0

P + ρgh = Pa +
1

2
ρv2

1
=⇒ v1 =

√

√

√

√

2(P − Pa)

ρ
+ 2gh

v1 =
√

2gh (if P = Pa)



Lecture 18: Fluid Mechanics 10

Using Bernoulli’s Law
A large storage tank filled with water develops a small hole in its side at a point
16 m below the water level. If the rate of flow from the leak is 2.5 x 10−3 m3/min,
determine

a) the speed at which the water leaves the hole, and

b) the diameter of the hole

Solution

We assume that the tank and the hole are both open to the atmosphere. Call
the top position 1 and the point of the hole position 2. So P1 = P2 = Pa. We
now write Bernoulli’s law:

P1 +
1

2
ρv2

1
+ ρgy1 = P2 +

1

2
ρv2

2
+ ρgy2

The continuity equation allows us to relate the speeds to the areas at the two
positions

v1A1 = v2A2 =⇒ v1 =
A2

A1

v2

Because the area A1 À A2 we can ignore v1 in comparison with v2 (v1 ¿ v2)
Now substitute v1 = 0 and cancel out the equal pressures in Bernoulli’s law to
get

ρgy1 =
1

2
ρv2

2
+ ρgy2 =⇒ v2

2
= 2g(y1 − y2)

v2 =
√

2gh =
√

2 · 9.8 · 16 = 17.7 m/s

For part b) we know that the volume flow rate is the product of the area of the
hole and the velocity

flow rate = Av

We first convert the flow rate given in m3/minute into m3/second by dividing
by 60. This gives 4.167 x 10−5 m3/second

4.167 x 10−5 = A2v2 = A2 · 17.7 =⇒ A2 = .2354 x 10−6 m2

This is equivalent to a diameter of 0.0017 meters.


