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REVIEW: Equation of Continuity and Bernoulli’s Equation

Equations in Fluid Dynamics
For moving incompressible fluids there are two important laws of fluid dynamics:

1) The Equation of Continuity, and

2) Bernoulli’s Equation.

These you have to know, and know how to use to solve problems.

The Equation of Continuity
The continuity equation derives directly from the incompressible nature of the
fluid. Suppose you have a pipe filled with a moving fluid. If you want to compute
the amount of mass moving by a point in the pipe, all you need to know is the
density ρ of the fluid, the cross sectional area A of the pipe, and the velocity v

of the fluid. Then the mass flow is given by ρ · A · v because

ρ · A · v = ρ · A ·
∆x

∆t
=

ρ∆V

∆t
=

∆m

∆t
(the “mass flow”)

If the fluid is truly incompressible, then the mass flow is the same at all points
in the pipe, and the density is the same at all points in the pipe:

ρA1v1 = ρA2v2 =⇒ A1v1 = A2v2 (the equation of continuity) (14.10)

Bernoulli’s Equation
Bernoulli’s equation is very powerful equation for moving, incompressible fluids,
and can be derived using the conservation of Mechanical Energy. The Bernoulli’s
Equation states that if you have a fluid moving in a pipe at point 1 with pressure
P1, speed v1, and height y1, and the fluid moves to point 2 with pressure P2,
speed v2, and height y2, then these six quantities are related as follows

P1 +
1

2
ρv2

1
+ ρgy1 = P2 +

1

2
ρv2

2
+ ρgy2 (Energy Conservation)

P +
1

2
ρv2 + ρgy = constant (Alternate form) (14.17)
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Using Bernoulli’s Equation: Venturi Tube and Torricelli’s Law

Worked Example: The Venturi Tube
A horizontal pipe with a constriction is called a Venturi Tube and is used to
measure flow velocities by measuring the pressure at two different cross sectional
areas of the pipe. Given two pressures P1 and P2 where the areas are A2 and A1

respectively, determine the flow velocity at point 2 in terms of these quantities
and the fluid density ρ.
First use Bernoulli’s law, and take the heights y1 = y2 = 0:

P1 +
1

2
ρv2

1
= P2 +

1

2
ρv2

2

Now substitute for one of the velocities, v1, by using the continuity equation:

A1v1 = A2v2 =⇒ v1 =
A2

A1

v2

=⇒ P1 +
1

2
ρ

(

A2

A1

v2

)

2

= P2 +
1

2
ρv2

2
=⇒ v2 = A1

√

√

√

√

√

2(P1 − P2)

ρ(A2
1 − A2

2)

Example Torricelli’s Law (speed of efflux)
A tank with a surface pressure P (at point 2) and a surface area A2 has a small
hole of area A1 << A2 at a distance of h below the surface. What is the velocity
of the escaping fluid which has density ρ ?

P2 +
1

2
ρv2

2
+ ρgh = P1 +

1

2
ρv2

1
and v2 =

A1

A2

v1 =⇒ v2 ≈ 0

P + ρgh = Pa +
1

2
ρv2

1
=⇒ v1 =

√

√

√

√

2(P − Pa)

ρ
+ 2gh

v1 =
√

2gh (if P = Pa)
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Using Bernoulli’s Law
A large storage tank filled with water develops a small hole in its side at a point
16 m below the water level. If the rate of flow from the leak is 2.5 x 10−3 m3/min,
determine

a) the speed at which the water leaves the hole, and

b) the diameter of the hole

Solution

We assume that the tank and the hole are both open to the atmosphere. Call
the top position 1 and the point of the hole position 2. So P1 = P2 = Pa. We
now write Bernoulli’s law:

P1 +
1

2
ρv2

1
+ ρgy1 = P2 +

1

2
ρv2

2
+ ρgy2

The continuity equation allows us to relate the speeds to the areas at the two
positions

v1A1 = v2A2 =⇒ v1 =
A2

A1

v2

Because the area A1 À A2 we can ignore v1 in comparison with v2 (v1 ¿ v2)
Now substitute v1 = 0 and cancel out the equal pressures in Bernoulli’s law to
get

ρgy1 =
1

2
ρv2

2
+ ρgy2 =⇒ v2

2
= 2g(y1 − y2)

v2 =
√

2gh =
√

2 · 9.8 · 16 = 17.7 m/s

For part b) we know that the volume flow rate is the product of the area of the
hole and the velocity

flow rate = Av

We first convert the flow rate given in m3/minute into m3/second by dividing
by 60. This gives 4.167 x 10−5 m3/second

4.167 x 10−5 = A2v2 = A2 · 17.7 =⇒ A2 = .2354 x 10−6 m2

This is equivalent to a diameter of 0.0017 meters.



Lecture 19: Sound and Hearing 4

CHAPTER 15: Wave Motion
Qualitative Description of Waves
A wave is the propagation of energy (motion) through a medium. When a wave
propagates, the medium is disturbed from its equilibrium position for a short
period of time and then returns to its normal position. Think of the “wave”
which travels around the fans in a football stadium. The medium here is the
football fans, and the motion is a pulse movement standing up and then sitting
down.
A transverse wave propagates in a direction perpendicular to the motion of
the medium (again think of the football wave). Water waves are a good example
of transverse waves. A longitudinal wave has its motion in the direction of the
displacement. Sound waves are a good example of longitudinal wave motion.
No matter what the wave, there is no net displacement of the particles in the
medium once the wave has passed.

Mathematical Description of Waves
A wave is characterized by a displacement y which occurs at a given position
x and at a given time t. In order to describe mathematically the equation of
a wave, one must write y as a function of two independent parameters x and t.
The most common type of wave is expressed with a trigonometric sine function.

y(x, t) = A cos(kx−ωt) (wave ampl. A traveling in the +x direction) (15.3)

y(x, t) = A cos(kx+ωt) (wave ampl. A traveling in the −x direction) (15.4)

The most important equation of all is the speed equation for a wave in terms of
its frequency f and its wavelength λ

v = fλ 15.1

The other parameters k and ω are related to λ and f as

wave number: k ≡
2π

λ
and angular frequency: ω ≡ 2πf

For the case of a stretched (guitar) string or cable under a tension F and having
a mass M and length L, the speed of a wave pulse is

v =

√

√

√

√

F

µ
where µ ≡

M

L
; v = fλ =

λ

T
(harmonic waves) (15.13, 15.1)
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The Two Types of Waves

Transverse Waves
The most familiar type of wave motion is that of waves on a beach. This motion
should give you a good idea of the wave phenomenon. It is the transmission of
energy, manifested by the up and down motion of the water, through a medium.
Think of a seagull or a duck floating on the water. Before a wave hits, the bird
is motionless. Then the bird is successively raised up and lowered by the moving
water, and finally the bird goes back to its original height. The same is true
of the water itself. Except when the wave is passing through, the molecules of
the water are undisturbed from their positions. They occupy the same positions
after the wave as before.
This type of water wave is a transverse wave. The energy contained in the
wave pulse causes the medium to move up and down which is perpendicular to
the direction in which the wave pulse is propagating.
Wave motion is an important subject of study because it is the basis for all our
electronic communication. Light itself is a wave phenomenon, and the heat from
the sun reaches us by infra–red rays, which is all part of the same theory of
electric and magnetic waves.

Longitudinal Waves
The second type of wave motion is longitudinal waves. In this type of wave
propagation, the energy of the wave causes the medium to move back and forth in
a direction parallel to the direction of propagation of the wave. Sound waves are
the most important examples of longitudinal wave motion. Another example
would be the effect of a gust of wind blowing through a field of wheat. One can
see the stalks of wheat “rippling” in the field, moving back and forth, as the
gust moves through. Thus the song phrase “amber waves of grain”.
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The Equation of Motion of a Traveling Wave in One Dimension

Fundamentally a wave travels. We consider first the simplest case of a sinusoidal
wave traveling in only one dimension, say x. The displacement that the wave
causes we say is in the y direction. The wave is characterized by an amplitude
ym, a wavelength λ and a frequency f , as we saw in the oscillation lecture.

ω = 2πf ; T =
1

f

The displacement y must be a function of both the position x and the time t.
If the shape of the wave does not change as it moves along, then we can write a
special form of this dependence for a sinusoidal wave:

y(x, t) = A cos (kx − ωt) (15.7)

Fig. 15.4 gives “snapshots” of a traveling wave on the x and the t axes. The
parameter k is related to the wavelength k ≡ 2π/λ.

The speed of a traveling wave

The speed of a traveling wave is given by the important formula:

v = λf (15.1)

This can be obtained by looking at consecutive snapshots of the traveling wave.

The Wave Equation
Previously, for oscillations of a spring or a pendulum, we have written the restor-
ing force equation as a second derivative equation

d2

dt2
= ω2x =⇒ with solution x(t) = xm cos(ωt + φ)

Wave motion involves two independent parameters x and t to produce a depen-
dent function y(x, t). The differential equation of the motion is more compli-
cated:

∂2y

∂t2
=

1

v2

∂2y

∂x2
=⇒ with solution y(x, t) = A cos(kx ∓ ωt) 15.12

We can prove the solution works by simply carrying out the derivatives.
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Using the Wave Equation
Consider the sinusoidal wave given by the formula

y(x, t) = 0.00327 cos (72.1x − 2.72t)

where the three numerical constants are in meters, rad/meter, and rad/s. What
is the amplitude, the wavelength, the frequency, and the speed of this wave?
To solve this, all one has to do is compare with the basic sinusoidal wave equation:

y(x, t) = A cos (kx − ωt) (15.7)

Then it is simply a matter of comparing the components of this equation with
those in the example:

coefficient of cosine function = A = 0.00327 meters

coefficient of x = k = 72.1 rad/m =⇒ λ =
2π

k
= 0.0871 meters

coefficient of t = ω = 2.72 rad/s =⇒ f =
ω

2π
= 0.433 Hz

The wave speed can be computed from v = λf

v = λf = 0.0871 · 0.433 = 0.0377 m/s

Lastly, in which direction is this wave traveling: to the right (positive x direc-
tion), or to the left (negative x direction)? What one feature to you look at in
the expression for this wave?
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The Velocity of Waves on a String Under Tension

This being “Music City” we all know about guitars and guitar strings. Guitar
strings, which can be metallic or non–metallic, are of varying lengths according
to the pitch (frequency) of the sound. The guitar string is tuned to the correct
sound by changing slightly the tension using a turn screw in the neck of the
guitar at the end of the string. The reason that this works is that the tension
of the string determines the velocity of the wave in which is generated when the
guitar string is plucked.

v =

√

√

√

√

F

µ
(15.19)

where µ is the mass per unit length of the string µ = M/L. By making the
tension greater, then the velocity increases. In turn, an increase in velocity
leads to a higher frequency f of the sound.

v = fλ =⇒ f =
v

λ
(15.1)

where the wavelength of the wave motion in the guitar string is fixed by the
length of the string, which we will discuss later.

Worked Example of a Wave Traveling on a String
A uniform string has a mass of 0.3 kg and a length of 6 m. Tension is maintained
on the string by suspending a 2 kg mass from one end. Find the speed of a
sinusoidal wave in the string:

v =

√

√

√

√

F

µ
=

√

√

√

√

F

M/L
=

√

√

√

√

√

(2.0 · 9.8)
0.3/6

= 19.8 m/s
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Reflection and Transmission of Waves

Another interesting phenomenon about wave motion is what happens when a
wave pulse traveling along a string hits a solid wall to which the string is firmly
attached. What happens is that the wave is reflected and inverted. On the other
hand, if a wave is traveling along a string and gets to the end of the string which
is not held tight but is free to move, then the wave is reflected but not inverted.
A third possibility is the intermediate case. Suppose that there are two strings
of different densities which are tied together. A wave pulse is traveling along
the first (lighter) string. In that case there will be an inverted reflected inverted
wave along the first string, and a non–inverted transmitted wave along the second
string. On the other hand, if the wave pulse is first traveling along the heavier
string, both the transmitted and the reflected waves will be non–inverted.
When a wave pulse travels from medium A to medium B, and medium B is denser
than medium A (=⇒ vA > vB), then the reflected wave is inverted. Conversely, if
medium A is more dense than medium B (=⇒ vB > vA), then the reflected wave
is non–inverted. In either case, the transmitted wave is non–inverted. What
about the amplitudes of the reflected and transmitted waves?
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Superposition and Interference of Waves
A very interesting facet of wave theory is the superposition principle
If two or more traveling waves are moving through a medium, the resultant wave
function at any point is the algebraic sum of the wave functions of the indi-
vidual waves. What this means is that two waves traveling in a string act
independently of one another. Two waves can even pass through one another
without disturbing their individual shapes. The addition (algebraic sum) of the
two waves is called interference. For example, if the peak of one wave meets
the minimum of a second wave of equal amplitude, then there will be no net
displacement of the medium. This is called destructive interference. On the
other hand if the peak of one wave meets the peak of a second wave, or if the
minima of the two waves coincide, then the two waves reinforce each other and
the net displacement is doubled. This is called constructive interference.
When two waves traveling in the same direction, with the same amplitude ym,
the same angular frequency ω, and the same wavelength λ = 2π/k, but sepa-
rated by a phase difference φ meet at the same place, they will add algebraically
(superposition)
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Superposition and Standing Waves

When two waves traveling in the same direction, with the same amplitude A0, the
same angular frequency ω, and the same wavelength λ = 2π/k, but separated
by a phase difference φ meet at the same place, they will add algebraically
(superposition)

y1(x, t) = A0 sin (kx − ωt) and y2(x, t) = A0 sin (kx − ωt − φ)

y3 ≡ y1 + y2 = A0 sin (kx − ωt) + A0 sin (kx − ωt − φ)

y3(x, t) =
(

2A0 cos
φ

2

)

sin (kx − ωt −
φ

2
)

The phase difference φ depends on the location x relative to the source of the two
waves. For certain values of x it is possible that φ = 0 in which case the resultant
wave has twice the amplitude of the original wave (constructive interference). In
other cases, the value of φ could be π/2 or an odd half integer multiple of π/2 in
which case the resultant wave will have zero amplitude (destructive interference).
For any value of φ in this example, the resultant wave has the same frequency
and the same wavelength as the original two waves.

Another example of superposition is to have a string fixed at both ends such that
there are waves traveling in opposite directions along the string from reflections
at either end. In this case one would have two waves of the form

y1(x, t) = A cos (kx − ωt) and y2(x, t) = −A cos (kx + ωt)

y3 = y1 + y2 = A (cos (kx − ωt) − cos (kx + ωt)) =
(

2A sin kx
)

sin ωt

This is called a standing wave which looks like just a sine function of time but
with an amplitude according to the position x. In fact, at certain positions called
nodes, the amplitude will always be zero (no motion). The node positions are
given by kx = nπ where n is any integer

kx = nπ =⇒ x =
nπ

k
=

nπ

2π/λ
=

nλ

2

Since the end of a fixed string at x = L must also be a node, this sets a condition
on the wavelengths and frequencies of standing waves therein

fn =
v

λn

=
v

2L/n
=

√

F/µ

2L/n
=

n

2L

√

√

√

√

F

µ
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Standing Wave Problems

Two waves in a long string are given by

y1(x, t) = 0.015 cos (
x

2
− 40t) and y2(x, t) = −0.015 cos (

x

2
+ 40t)

where x, y1, and y2 are in meters, and t is in seconds. Determine the posi-
tions of the nodes of the resulting standing wave, and what is the maximum
displacement of the standing wave at the position x = 0.4 meters ?
Again you must recognize the components of each individual wave in comparison
to the general form: You should see that A = 0.015 m, k = 0.5 m−1, and
ω = 40 s−1, and that y1 travels to the +x direction, and that y2 travels in the
−x direction.
The superposition of two waves of the same amplitude, wavelength, and fre-
quency, but traveling in opposite directions is a special case, leading to a stand-
ing wave:

standing wave y3(x, t) =
(

2A sin kx
)

sin ωt

standing wave y3(x, t) =
(

2 · 0.015 sin
x

2

)

cos 40t =
(

0.03 sin
x

2

)

sin 40t

The nodes of a standing wave are the positions x such that the value of y3(x, t)
is always zero, no matter what the value of t. This can only occur when the
term in the parenthesis is zero, or the argument of sin kx is zero. In turn that
means that kx = nπ where n is any integer. In this problem then

kx =
x

2
= nπ =⇒ x = 2nπ

If one takes a given position x = 0.4 m, then the maximum value of y3(x = 0.4, t)
will occur when the sin ωt function achieves its maximum value which is 1 as
usual, specifically when t = (2n + 1)π/2ω, n=0, 1, ...). In that case

y3(x = 0.4, t =
(2n + 1)π

2ω
) =

(

0.03 sin
0.4

2

)

sin (
(2n + 1)π

2
) = 0.0294 m
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CHAPTER 16: Sound Waves and Standing Waves

Sound waves are longitudinal waves which propagate in a medium such as the
air, or perhaps liquids (sonar submarine detection), or even solids. Qualitatively,
sound waves are movements of high density (or high pressure) pulses of the
medium followed by low density (low pressure) pulses. The high density regions
are the regions of compression, and the low density regions are the regions of
rarefaction.

The density pulses occur because parts of the medium shift momentarily from
the equilibrium positions giving build–ups and decreases in the normal density.
The equation for these position shifts s(x, t):

y(x, t) = A cos (kx − ωt) where k ≡
2π

λ
and ω ≡ 2πf =

2π

T
(16.1)

Instead of using the displacement y(x, t) to characterize the sound wave, we can
also use the pressure change function p(x, t) to characterize the sound wave.

p(x, t) = BkA cos (kx − ωt) where B = the Bulk Modulus (16.4)

Here the amplitude of the pressure change wave BkA is computed in terms of
the amplitude of the displacement wave y.

The Doppler Effect is a well known phenomenon. When a source of sound
waves S, say an ambulance with a siren, is approaching (−vS) one hears a
higher than normal frequency, and when the ambulance has passed (+vS) the
frequency becomes lower. The same effects happen if an observer in a moving
car is approaching (+vL where L means Listener of sound) a stationary sound
source, and then recedes (−vL) from that sound source. The frequency heard by
the listener fL is given in terms of the actual frequency of the source fS by the
following equation

fL =

(

v ± vL

v ∓ vS

)

fS v = fλ (16.26)

In the above equation, when the listener is going towards the source you use the
+vL in the numerator. When the listener is going away from the source you use
the −vL in the numerator.
When the source is going towards the listener you use the −vS in the denomi-
nator. When the source is going away from the listener you use the +vS in the
denominator. We will study examples of the Doppler effect next.
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The Doppler Effect

The Doppler Effect is an important physical phenomenon which applies to all
wave phenomenon, including sound and electromagnetism (e.g. radar). Essen-
tially the Doppler effect means that when there is relative motion between a
source and an observer, then the heard frequency fL will be different from the
emitted frequency from the source fS. The relationship depends on the velocity
v of the wave in the medium, the velocity vS of the source in the medium, and
the velocity vL of the listener in the medium. Using this notation we have the
equation for the perceived frequency in terms of the source frequency:

fL =

(

v ± vO

v ∓ vS

)

fS where v = fλ

One uses the +vL in the numerator when the listener is moving towards the
source and −vL when the observer is moving away from the source. Conversely,
one uses the −vS when the source is moving towards the listener and +vS when
the source is moving away from the listener.

Doppler Effect Problems

Simple Problem A commuter train approaches a passenger platform at a con-
stant speed vS = 40 m/s. The train horn is sounded at 320 Hz. What is the
frequency heard by an observer (stationary) on the platform ? What is the
wavelength measured by a person on the platform ?

Doppler Effect fL =

(

v ± vL

v ∓ vS

)

fS v = fλ = f ′λ′ = 343 m/s

Here vL = 0 and we use the −vS sign since the source is approaching the observer
(that makes the frequency f ′ bigger as experience should tell you)

fL =

(

343

343 − 40

)

320 = 362 Hz

The observed wavelength is calculated from the observed frequency and the un-
changed velocity of sound

λL =
v

fL

=
343

362
= 0.948 meters
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Doppler Effect Problems

Harder Problem
A train moving at a speed vT of 20 m/s is traveling in the same direction as a
car which has a speed vC of 40 m/s. When the car has overtaken and passed the
train, then the car horn sounds at 510 Hz (f1) and the train whistle at 320 Hz
(f2). What is the frequency of the train whistle as heard by the car’s occupant,
and the car’s horn as heard by the train passengers ?
Solution For the people in the car hearing the train whistle

f2L =

(

v − vC

v − vT

)

320 =

(

343 − 40

343 − 20

)

320 = 267 Hz

Here the source (train, in the denominator) is moving at vT and it is moving
toward the listener (car, in the numerator), and the listener is moving at vC

away from the source. The passengers in the car hear a lowered frequency of the
train’s whistle.

For the passengers in the train hearing the car’s horn

f1L =

(

v + vT

v + vC

)

510 =

(

343 + 20

343 + 40

)

510 = 483 Hz

Here the source (car, in the denominator) is moving at vC away from the lis-
tener (train, in the numerator) which is moving at vT toward the source. The
train passengers hear a lowered frequency of the car’s horn, but the amount of
frequency change is not as much.
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Standing Sound Waves and Beats

Just as in a fixed string, there can be standing sound waves set up in a column
of air. The only difference is that a string normally has both ends fixed, whereas
in a column of air one or both ends can be open (to function as a pressure node
or a displacement anti node). The result is that there are two sets of equations
for the harmonic frequencies:

column open at both ends fn = n
v

2L
(n = 1, 2, 3, ...) (16.16)

column closed at one end fn = n
v

4L
(n = 1, 3, 5, ...) (16.22)

Beat Frequencies
So far all the superpositions of waves have used the same frequency for both
waves. One can also consider what happens when the two waves have different
frequencies, say f1 and f2 but the same amplitude A. When two such waves are
added together the result is more complicated. At a given position x, the sum
of the two waves will have a time varying amplitude given by

y3(t) = 2A cos 2π
(f1 − f2

2

)

t cos 2π
(f1 + f2

2

)

t

The human ear can hear the first term of this time varying amplitude as a pulsing
sound. These are called beats: the periodic variation in intensity at a given point
due to the superposition of two waves having slightly different frequencies. If the
two frequencies f1 and f2 differ by less than 20, then this so–called beat frequency
can be heard. One can try striking two piano keys of slightly different pitch to
hear the beats. In fact that is how pianos are tuned.


