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REVIEW: Superposition and Standing Waves

When two waves traveling in the same direction, with the same amplitude A0, the
same angular frequency ω, and the same wavelength λ = 2π/k, but separated
by a phase difference φ meet at the same place, they will add algebraically
(superposition)

y1(x, t) = A0 sin (kx − ωt) and y2(x, t) = A0 sin (kx − ωt − φ)

y3 ≡ y1 + y2 = A0 sin (kx − ωt) + A0 sin (kx − ωt − φ)

y3(x, t) =
(

2A0 cos
φ

2

)

sin (kx − ωt −
φ

2
)

The phase difference φ depends on the location x relative to the source of the two
waves. For certain values of x it is possible that φ = 0 in which case the resultant
wave has twice the amplitude of the original wave (constructive interference). In
other cases, the value of φ could be π/2 or an odd half integer multiple of π/2 in
which case the resultant wave will have zero amplitude (destructive interference).
For any value of φ in this example, the resultant wave has the same frequency
and the same wavelength as the original two waves.

Another example of superposition is to have a string fixed at both ends such that
there are waves traveling in opposite directions along the string from reflections
at either end. In this case one would have two waves of the form

y1(x, t) = A cos (kx − ωt) and y2(x, t) = −A cos (kx + ωt)

y3 = y1 + y2 = A (cos (kx − ωt) − cos (kx + ωt)) =
(

2A sin kx
)

sin ωt

This is called a standing wave which looks like just a sine function of time but
with an amplitude according to the position x. In fact, at certain positions called
nodes, the amplitude will always be zero (no motion). The node positions are
given by kx = nπ where n is any integer

kx = nπ =⇒ x =
nπ

k
=

nπ

2π/λ
=

nλ

2
(n = 1, 2, 3, . . .)

Since the end of a fixed string at x = L must also be a node, this sets a condition
on the wavelengths and frequencies of standing waves therein

L =
nλ

2
=⇒ fn =

v

λn

=
v

2L/n
=

√

F/µ

2L/n
=

n

2L

√

√

√

√

F

µ
(n = 1, 2, 3, . . .)
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ActivPhysics OnLine Example 10.4

Initial Simulation Conditions and Questions 1–4

The ActivPhysics 10.4 Example simulation introduces standing waves in a
1.0 meter long string under tension. A tension value T = 1.6 N is to be se-
lected, along with a mass per unit length paramemter µ = 0.1 kg/m. With
these two parameters, the speed of a wave in the string is

v =

√

√

√

√

T

µ
=

√

√

√

√

1.6

0.1
= 4.0 m/s

From the previous page, we will now that the frequencies of the standing waves
in the string are given by

fn =
v

2L/n
= n

4.0

2
= 2n Hz

The fundmental frequency has n = 1, which in this case is f1 = 2.0 Hz. The
harmonics occur for n = 2, 3, . . . meaning f2 = 4.0 Hz, f3 = 6.0 Hz, and so on.
We can dial those frequencies in to see the various standing wave patterns.

Change of Parameters for Questions 5–6

The second set of simulations in this example sets the tension T = 3.0 N, and
the mass per unit length as µ = 0.03 kg/m. With these parameters we get a
different speed for the waves in the string

v =

√

√

√

√

T

µ
=

√

√

√

√

3.0

0.03
= 10.0 m/s

In turn, this gives a new set of standing wave frequencies

fn =
v

2L/n
= n

10.0

2
= 5n Hz

We can dial in these numbers to see what happens.

Last Simulation, Question 7

The final simulation in this example has the tension at T = 3.6 N, and the mass
parameter at µ = 0.1 kg/m. With these parameters we get a third speed

v =

√

√

√

√

T

µ
=

√

√

√

√

3.6

0.1
= 6.0 m/s =⇒ fn = n

6.0

2
= 3n Hz
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Standing Wave Problems

Two waves in a long string are given by

y1(x, t) = 0.015 cos (
x

2
− 40t) and y2(x, t) = −0.015 cos (

x

2
+ 40t)

where x, y1, and y2 are in meters, and t is in seconds. Determine the posi-
tions of the nodes of the resulting standing wave, and what is the maximum
displacement of the standing wave at the position x = 0.4 meters ?
Again you must recognize the components of each individual wave in comparison
to the general form: You should see that A = 0.015 m, k = 0.5 m−1, and
ω = 40 s−1, and that y1 travels to the +x direction, and that y2 travels in the
−x direction.
The superposition of two waves of the same amplitude, wavelength, and fre-
quency, but traveling in opposite directions is a special case, leading to a stand-

ing wave:

standing wave y3(x, t) =
(

2A sin kx
)

sin ωt

standing wave y3(x, t) =
(

2 · 0.015 sin
x

2

)

cos 40t =
(

0.03 sin
x

2

)

sin 40t

The nodes of a standing wave are the positions x such that the value of y3(x, t)
is always zero, no matter what the value of t. This can only occur when the
term in the parenthesis is zero, or the argument of sin kx is zero. In turn that
means that kx = nπ where n is any integer. In this problem then

kx =
x

2
= nπ =⇒ x = 2nπ

If one takes a given position x = 0.4 m, then the maximum value of y3(x = 0.4, t)
will occur when the sin ωt function achieves its maximum value which is 1 as
usual, specifically when t = (2n + 1)π/2ω, with n=0, 1, ... In that case

y3(x = 0.4, t =
(2n + 1)π

2ω
) =

(

0.03 sin
0.4

2

)

sin (
(2n + 1)π

2
) = 0.0294 m
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CHAPTER 16: Sound Waves and Standing Waves

Sound waves are longitudinal waves which propagate in a medium such as the
air, or perhaps liquids (sonar submarine detection), or even solids. Qualitatively,
sound waves are movements of high density (or high pressure) pulses of the
medium followed by low density (low pressure) pulses. The high density regions
are the regions of compression, and the low density regions are the regions of
rarefaction.

The density pulses occur because parts of the medium shift momentarily from
the equilibrium positions giving build–ups and decreases in the normal density.
The equation for these position shifts s(x, t):

y(x, t) = A cos (kx − ωt) where k ≡
2π

λ
and ω ≡ 2πf =

2π

T
(16.1)

Instead of using the displacement y(x, t) to characterize the sound wave, we can
also use the pressure change function p(x, t) to characterize the sound wave.

p(x, t) = BkA cos (kx − ωt) where B = the Bulk Modulus (16.4)

Here the amplitude of the pressure change wave BkA is computed in terms of
the amplitude of the displacement wave y.

The Doppler Effect is a well known phenomenon. When a source of sound
waves S, say an ambulance with a siren, is approaching (−vS) one hears a
higher than normal frequency, and when the ambulance has passed (+vS) the
frequency becomes lower. The same effects happen if an observer in a moving
car is approaching (+vL where L means Listener of sound) a stationary sound
source, and then recedes (−vL) from that sound source. The frequency heard by

the listener fL is given in terms of the actual frequency of the source fS by the
following equation

fL =

(

v ± vL

v ∓ vS

)

fS v = fλ (16.26)

In the above equation, when the listener is going towards the source you use the
+vL in the numerator. When the listener is going away from the source you use
the −vL in the numerator.
When the source is going towards the listener you use the −vS in the denomi-
nator. When the source is going away from the listener you use the +vS in the
denominator. We will study examples of the Doppler effect next.
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The Doppler Effect

The Doppler Effect is an important physical phenomenon which applies to all
wave phenomenon, including sound and electromagnetism (e.g. radar). Essen-
tially the Doppler effect means that when there is relative motion between a
source and an observer, then the heard frequency fL will be different from the
emitted frequency from the source fS. The relationship depends on the velocity
v of the wave in the medium, the velocity vS of the source in the medium, and
the velocity vL of the listener in the medium. Using this notation we have the
equation for the perceived frequency in terms of the source frequency:

fL =

(

v ± vL

v ∓ vS

)

fS where v = fλ

One uses the +vL in the numerator when the listener is moving towards the
source and −vL when the observer is moving away from the source. Conversely,
one uses the −vS when the source is moving towards the listener and +vS when
the source is moving away from the listener.

Doppler Effect Problems

Simple Problem A commuter train approaches a passenger platform at a con-
stant speed vS = 40 m/s. The train horn is sounded at 320 Hz. What is the
frequency heard by an observer (stationary) on the platform ? What is the
wavelength measured by a person on the platform, assuming a speed of sound
at 343 m/s?

Doppler Effect fL =

(

v ± vL

v ∓ vS

)

fS v = fλ = f ′λ′ = 343 m/s

Here vL = 0 and we use the −vS sign since the source is approaching the observer
(that makes the frequency f ′ bigger as experience should tell you)

fL =

(

343

343 − 40

)

320 = 362 Hz

The observed wavelength is calculated from the observed frequency and the un-
changed velocity of sound

λL =
v

fL

=
343

362
= 0.948 meters
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Doppler Effect Problems

Harder Problem

A train moving at a speed vT = 20 m/s is traveling in the same direction as a
car which has a speed vC = 40 m/s. When the car has overtaken and passed
the train, then the car horn sounds at 510 Hz (= f1) and the train whistle at
320 Hz (= f2). What is the frequency of the train whistle as heard by the car’s
occupant, and the car’s horn as heard by the train passengers, assuming a speed
of sound at 343 m/s?
Solution

For the people in the car hearing the train whistle

f2L =

(

v − vL

v − vS

)

f2S =

(

v − vC

v − vT

)

320 =

(

343 − 40

343 − 20

)

320 = 300 Hz

Here the source (train, in the denominator) is moving at vT and it is moving
toward the listener (car, in the numerator), and the listener is moving at vC

away from the source. The passengers in the car hear a lowered frequency of the
train’s whistle.

For the passengers in the train hearing the car’s horn

f1L =

(

v + vL

v + vS

)

f1S =

(

v + vT

v + vC

)

510 =

(

343 + 20

343 + 40

)

510 = 483 Hz

Here the source (car, in the denominator) is moving at vC away from the listener
(train, in the numerator) which is moving at vT toward the source. The train
passengers hear a decreased frequency of the car’s horn.
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Standing Sound Waves and Beats

Just as in a fixed string, there can be standing sound waves set up in a column
of air. The only difference is that a string normally has both ends fixed, whereas
in a column of air one or both ends can be open (to function as a pressure node
or a displacement anti node). The result is that there are two sets of equations
for the harmonic frequencies:

column open at both ends fn = n
v

2L
(n = 1, 2, 3, ...) (16.16)

column closed at one end fn = n
v

4L
(n = 1, 3, 5, ...) (16.22)

Beat Frequencies

So far all the superpositions of waves have used the same frequency for both
waves. One can also consider what happens when the two waves have different
frequencies, say f1 and f2 but the same amplitude A. When two such waves are
added together the result is more complicated. At a given position x, the sum
of the two waves will have a time varying amplitude given by

y3(t) = 2A cos 2π
(f1 − f2

2

)

t cos 2π
(f1 + f2

2

)

t

The human ear can hear the first term of this time varying amplitude as a pulsing
sound. These are called beats: the periodic variation in intensity at a given point

due to the superposition of two waves having slightly different frequencies. If the
two frequencies f1 and f2 differ by less than 20, then this so–called beat frequency
can be heard. One can try striking two piano keys of slightly different pitch to
hear the beats. In fact that is how pianos are tuned.


