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Chapter 16: Quantitative Measures for Sound
Speed of Sound in Gases, Liquids, and Solids
The speed of sound in air, at standard temperature and pressure, is 344 m/s
(see speeds of sound in Table 16.1, page 534). In general for an ideal gas the
formula for the speed of sound is

Gas: v =

√

√

√

√

γRT

M

where R is the ideal gas constant which we will see shortly, γ is a ratio of heat
capacities (=1.40 for diatomic gases, =1.67 for the monotonic noble gases), T is
the temperature in Kelvin, and M is the molecular weight of the gas in moles.
For example, air has an average M = 28.8 × 10−3 kg/mol, room temperature
T = 293 K, and R = 8.314 in these MKS units. So the speed of sound in air is

vair =

√

√

√

√

(1.40)(8.314)(203)

28.8 × 10−3
= 344 m/s

For liquids, the speed of sound depends on the bulk modulus B of the liquid and
the density ρ of the liquid

Liquid: v =
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ρ
For water the speed of sound is 1543 m/s

For solids, the speed of sound depends on the Young’s modulus Y , and the
density of the solid

Solid: v =

√

√

√

√

Y

ρ
For steel, the speed of sound is 5941 m/s

Intensity of Sound
As with energy in any wave, the intensity of sound various with the square
of the amplitude of the wave. In the case of sound, there is a dimensionless

measure of sound intensity, which essentially is the ratio of a given intensity to
the minimum intensity detectable by the human ear. This minimum intensity
number is taken as I0=10−12 W/m2. The sound intensity (ratio) is called the
decibel and is symbolized as β. The decibel definition for a sound intensity I is

β ≡ 10 log10

I

I0

See Table 16.2, page 540, for typical sound intensities
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Chapter 17: Temperature and Heat
Temperature
Temperature is a new physical quantity, for which there are three scales in
common use: Fahrenheit (F), Celsius (C), and Kelvin (K, or absolute tempera-
ture). These three scales are all related to each other:

TF =
9

5
TC + 32 and TK = TC + 273.15 Note: − 40o C = −40o F

At the atomic or molecular level, we can discover that temperature is a measure
of the average kinetic energy in the atoms or molecules.

Thermal expansion (see Tables 17.2 and 17.3 on page 578)
Solids and liquids will generally expand when the temperature rises. The ex-
pansion is proportional to the amount of temperature change according to

∆L = αL0∆T and ∆V = βL0∆T

For solids β = 3α. If a solid has linear dimension L0, and it is heated but
constrained to remain at the same length, then the solid will be under a stress

F

A
= −Y α∆T

Liquid volume expansion coefficients are ≈ 10 times larger than those of a solid.

Heat (See Table 17.4 on page 587)
Heat is a unit of energy, and can be quoted in calories where 1 calo-
rie=4.186 Joules. A solid or liquid of mass m will increase its temperature
by an amount ∆T if an amount heat Q is added according to the formula

Q = mc∆T

The quantity c is called the heat capacity of the material, and is typically quoted
in calories/gram-K, or Joules/gram-K. Values of c for different materials are
given in Table 17.3, on page 585. A solid of mass m can change to a liquid
(melting), at a fixed temperature, with an amount of heat

Q = mLf Lf ≡ Latent heat of fusion

A liquid of mass m can change to a gas (evaporating), at a fixed temperature,
with an amount of heat

Q = mLv Lv ≡ Latent heat of vaporization
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Chapter 17: Heat Transfer
Origin of the calorie unit
A few hundred years ago when people were investigating heat and temperature
phenomena, the idea was that heat was some kind of invisible caloric fluid which
could flow from one material to another. This is the origin of the word calorie,
which we now know as a form of energy. A calorie can be defined as the amount
of heat energy needed to raise the temperature of water by one Celsius degree,
or one Kelvin.1 Since the heat capacity formula for raising the temperature of a
mass is given by

Q = mc∆T (Heat capacity “c” is also called specific heat)

this means that the heat capacity number c for water is 1 calorie/gram-K.

Methods of heat transfer
Heat can be transferred by three methods

1) Conduction. If we have a material of cross-sectional area A and length L,
with one end of the length at a high temperature TH and the other length
at a low temperature TL, then heat will flow from the high temperature side
to the lower temperature side according to:

H =
dQ

dt
= kA

TH − TL

L
Here k is the thermal conductivity of the material in units of W/m-K.

2) Convection. Convection involves masses with high temperature moving into
regions of low temperature. Rising currents of air from the Earth’s surface
are examples of heat transfer by convection. There is no simple equation
for convection as there is for conduction.

3) Radiation. Radiation is the emission of heat energy in the form of electro-
magnetic waves from their surface. All objects above absolute zero temper-
ature will radiate according to the Stefan-Boltzmann equation

H = AeσT 4

where A is the area of the body’s surface, e is the emissivity parameter which
is dimensionless and is 0 < e ≤ 1, σ is the Stefan-Boltzmann constant with
a value σ = 5.67×10−8 W/m2-K4, and T is temperature in the Kelvin scale.

1The modern language convention is to simply say Kelvin, and not Kelvin degree or degrees Kelvin.
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Calorimetry Fundamentals
Basic Equation
Calorimetry problems deal with the transfer of heat from a hot system at tem-
perature TH to a one or more colder systems at temperature TC . Because of
energy conservation there is an exact equality

Heat Lost by Hot System = Heat Gained by Colder System(s)

Typically in such problems a final equilibrium temperature TE is reached where
the final temperature is between the two original temperatures: TC < TE < TH .

Heat Loss and Heat Gain Mechanisms
Heat is lost by a hot system of mass ma in the following two basic ways

1) Lowering of the temperature of the hot system by an amount ∆Ta, for which
the heat loss ∆Qa is proportional to the specific heat

∆Qa = maca∆Ta (∆Ta is negative for heat loss)

2) Condensing (reverse of evaporation) or freezing (reverse of melting) for
which the heat loss is

∆Qav = −maLv or ∆Qaf = −maLf

Notice that the condensing or freezing occurs at a specific temperature
characteristic of the material ma, such as 100o C for condensing stream or
0o C for freezing water.

Heat is gained by a colder system of mass mb in two comparable ways

1) Raising of the temperature of the colder system by an amount ∆Tb, for
which the heat gain ∆Qb is proportional to the specific heat

∆Qb = macb∆Tb (∆Tb is positive for heat gain)

2) Melting or evaporation for which the heat gain is

∆Qbf = +mbLf or ∆Qav = +maLv

Again the melting or evaporation occurs at a constant temperature charac-
teristic of the material mb.
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Calorimetry Example
Example 17.9
A student wants to cool 0.25 kg (ma) of diet soda (mostly water) initially at
25o C. This will be done by adding ice cubes which are at −20o C coming out
of the freezer. What mass mb of ice must be added in order that the diet soda
plus melted ice all be at a final temperature of 0o C?
In this problem the mostly water diet soda will cool down from the initial 25o C
to the final temperature TE = 0o C. This will be a heat loss Qa

While this is happening the ice will first go from −20o C to 0o C, gaining an
amount of heat Qb. Then all the ice will melt, which will mean a further gain of
heat Qbf by the ice.
We have the heat energy conservation equation

Qa + Qb + Qbf = 0

where the heat lost by the soda is

Qa = maca∆Ta = (0.25 kg)(4190 J/kg-K)(0o − 25o) = −26, 000 J

while the heat gained in raising the temperature of the ice is

Qb = mbcb∆Tb = (mb kg)(2100 J/kg-K)(0o − (−20)o) = mb(4.2 × 104 J/kg)

and lastly the heat gained by melting the ice is

Qbf = mbLf = mb(3.34 × 105 J/kg)

So we get the equation

−26, 000 J + mb

[

(4.2 × 104 J/kg) + (3.34 × 105 J/kg)
]

=⇒ mb = 0.069 kg

You should note two features of this answer. The mass of ice needed is about
28% of the original mass of the soda, which sounds reasonable. Second, the
major fraction of the heat gained by the ice is in the melting phase. You can see
that this part of the heat gain, which is the second term in the brackets above,
is almost 8 times that of the first term which represents raising the temperature
of the ice itself.

Further thought question: How would you modify this solution if you wanted to
have the final temperature of the soda and the melted ice to be at 1o C instead
of 0o C?
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Thermal Conduction
Heat Flow Model
Thermal conduction through a material is the simplest type of heat transfer
to model, and it follows closely the old “caloric fluid” idea. You can think of
the heat as something in a hot material which is flowing downhill into a colder
material. In reality, since temperature is a measure of the average kinetic energy
of a material, what is happening is that kinetic energy is being transferred from
a hot material to a colder material.

Heat Conductivity Equation
The conduction of heat, H in Joules/second, through a cross-sectional area A
over a length L between a hot region TH and a colder region TC can be calculated
with the heat conductivity equation

H =
dQ

dt
= kA

TH − TC

L

where k is the thermal conductivity constant of the material. Values of k for
different materials are given in Table 17.5 on page 592. Materials with very
low heat conductivities, such as styrofoam or fiberglass, are actually good heat
insulators. On the other hand, metals are good heat conductors especially copper
and silver.

Heat Conductivity Example 17.13
Heat conductivity problems typically have a region of high temperature “reser-
voir” which stays at a constant TH . Similarly there is a region of colder temper-
ature which is at a constant TC . In between these two regions there is a heat
conducting material of end cross sectional area A and length L through which
heat is transferred from the hot reservoir to the colder reservoir. No heat is lost
the sides of the heat conducting material, but heat enters at one end and exits
the other end in a steady-state manner.
In this example a steel bar 10.0 cm long with cross-sectional area A = 4 cm2

has one end in a steam bath at TH = 100o C. The other end of the steel bar is
welded to a copper bar of the same cross sectional area but 20.0 cm long. The
free end of the copper bar is in an ice-water mixture kept at TC = 0o C. What
is the heat flow H through these bars, and what is the temperature TM where
the two bars are welded together?
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Chapter 18: Thermal Properties of Matter
Ideal Gas Law
For an ideal gas the pressure P , the volume V , and the absolute temperature T

are related by the ideal gas law

PV = nRT

where n is the number of moles of the gas, and R is the ideal gas constant. In
the MKS system, R = 8.314 J/mole-K. If pressure is given in atmospheres and
volume in liters, then R = 0.08206 L-atm/mol-K. From these two expressions
for R, it should be obvious that a “liter-atmosphere” has dimensions of energy
(or work).

Kinetic Theory of Ideal Gases
The microscopic physics explanation for the ideal gas law is the Kinetic Theory.
This theory has four assumptions: 1) a volume V of a gas contains a very large
(Avogadro scale) number of identical molecules each of mass m; 2) the molecules
behave as point particles and don’t interact with each other; 3) the molecules
collide elastically with the walls of the container according to Newton’s Laws;
and 4) the pressure developed on the walls comes from these collisions since the
walls are consider to be perfectly rigid and immobile.
Based on these four assumptions, it is possible to derive the ideal gas law and
to get a microscopic interpretation of temperature. Specifically we can derive
that the average kinetic energy of a molecule with mass m in an ideal gas is
proportional to the absolute temperature of the gas

1

2
mv2

average =
3

2
kT

The constant k is called the Boltzmann constant and has a value k = 1.381 ×
10−23 J/molecule-K. The Boltzmann constant is defined as the ideal gas constant
R divided by Avogadro’s number NA

k ≡
R

NA

=
8.314J/mol-K

6.022 × 1023molecules/mol
= 1.381 × 10−23 J/molecule-K
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Consequences of the Kinetic Theory of Gases
Root-Mean-Square Speed of Molecules in an Ideal Gas
The root-mean-square speed vrms for molecules in an ideal gas turns out to be:

vrms =

√

√

√

√

3kT

m
=

√

√

√

√

3RT

M

where M = NAm which is the molecular weight of one mole of a gas since there
are Avogadro’s number of molecules in one mole. You can now see why the
Earth’s atmosphere is missing a light gas such as helium. The average speed
of a helium molecule in the Earth’s atmosphere, given the temperature T in
the Earth’s atmosphere, would be bigger than the escape velocity of the Earth’s
gravity. Hence any helium in the Earth’s atmosphere is bound to disappear
into outer space. Fortunately for us humans, the average speed of an oxygen
molecule, at the same temperature T , is much slower (by what factor?) than
that of helium, and slower than the escape velocity of the Earth’s gravity. So
the Earth has retained these heavier gas molecules over billions of years.

Mean Free Path
The kinetic theory of molecules in a gas assumes that the molecules do not have
inelastic interactions with each other. The molecules can collide with each other
elastically, and that is how two gases reach an equilibrium temperature.
On pages 624–625 in the text book, there is a short derivation of the mean-free-

path formula. The mean-free-path, with the symbol λ is the average distance
that a molecule can travel in a gas before it collides elastically with a second
molecule. This λ distance depends on the total number of molecules in the gas
volume, and the radius r of the molecules which are taken as spheres:

λ =
kT

4π
√

2r2p

where T is the temperature of the gas and p is the pressure of the gas. From the
ideal gas equation you know that T/p is directly proportional to the number of
moles in the gas. For air at standard temperature and pressure, you can work
out (example 18.8 on page 625) that the mean free path is 5.8 × 10−8 m, as
compared with the size of the oxygen molecule which has a radius 2.0×10−10 m.
The mean free path is almost 300 times larger than the radius of the molecule.
You can also work out that the vrms = 484 m/s, meaning that in one second
there will be 1010 collisions. That is 1012 times smaller than Avogadro’s number.
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Kinetic Theory and the Heat Capacities of Gases
Monotomic Gases
Since we know that the average kinetic energy of a gas molecule is directly
proportional to the temperature, it is easy to predict the heat capacities of ideal
gases (see page 626). For monotomic gases, which are essentially point particles,
the heat capacity is given simply by

Monotomic gas molecule: CV =
3

2
R

This (upper case notation) means the number of Joules required to increase the
temperature of one mole of the gas by one K (or Celsius degree), as long as
the gas is kept at constant volume. If the gas is allowed to expand at constant
pressure, there is another heat capacity CP which we will study in Chapter 19.

Diatomic Gases
Diatomic gases, consisting of two molecules such as O2, can also rotate about
their center-of-mass. So adding heat to a diatomic molecule can also produce
rotational energy as well as increase the translational energy. Since only the
translational energy is proportional to the temperature, then there is a different
value for the heat capacity of a diatomic molecule. Nonetheless, there is still a
simple prediction from the kinetic theory

Diatomic gas molecule: CV =
5

2
R

We will be using the molar heat capacities of gases in our studies of the first and
second law of thermodynamics.


