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(REVIEW) Chapter 17: Heat Transfer
Origin of the calorie unit
A few hundred years ago when people were investigating heat and temperature
phenomena, the idea was that heat was some kind of invisible caloric fluid which
could flow from one material to another. This is the origin of the word calorie,
which we now know as a form of energy. A calorie can be defined as the amount
of heat energy needed to raise the temperature of water by one Celsius degree,
or one Kelvin.1 Since the heat capacity formula for raising the temperature of a
mass is given by

Q = mc∆T (Heat capacity “c” is also called specific heat)

this means that the heat capacity number c for water is 1 calorie/gram-K.

Methods of heat transfer
Heat can be transferred by three methods

1) Conduction. If we have a material of cross-sectional area A and length L,
with one end of the length at a high temperature TH and the other length
at a low temperature TL, then heat will flow from the high temperature side
to the lower temperature side according to:

H =
dQ

dt
= kA

TH − TL

L
Here k is the thermal conductivity of the material in units of W/m-K.

2) Convection. Convection involves masses with high temperature moving into
regions of low temperature. Rising currents of air from the Earth’s surface
are examples of heat transfer by convection. There is no simple equation
for convection as there is for conduction.

3) Radiation. Radiation is the emission of heat energy in the form of electro-
magnetic waves from their surface. All objects above absolute zero temper-
ature will radiate according to the Stefan-Boltzmann equation

H = AeσT 4

where A is the area of the body’s surface, e is the emissivity parameter which
is dimensionless and is 0 < e ≤ 1, σ is the Stefan-Boltzmann constant with
a value σ = 5.67×10−8 W/m2-K4, and T is temperature in the Kelvin scale.

1The modern language convention is to simply say Kelvin, and not Kelvin degree or degrees Kelvin.
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The Mechanical Equivalent of Heat

Heat energy stored in food is counted in kilocalories or Calories (upper case !)
where 1 Calorie = 4,186 Joules.
Example
A student eats a dinner rated a 2,000 Calories, and the student decides to “burn
that off” by constantly lifting a 50 kg mass (110 lbs) 2 meters high. How many
times would the student have to lift such a mass in order to burn off all that
dinner? Solution

The amount of energy contained in the dinner is given by

2000 · 4, 186 = 8.37 x 107 Joules

Lifting a 50 kg mass by 2 meters requires an energy

E = mgh = 50 · 9.8 · 2 = 980 Joules

So the total number of times to burn off the dinner is

n =
8.37 x 107

980
= 8, 840

Assuming it takes 5 seconds to lift weight each time, then the student would
need 12 hours total to successfully burn off the dinner.

Latent Heats

A more complicated type of problem involves a phase change. Suppose steam
at 130o C is chosen to warm 200 g of water in a 100 g glass container from 20
to 50o C. How much mass of steam would be needed. To solve this problem you
need to realize that the steam first cools down to 100o C, and then at 100o it
loses its heat of fusion (at 3.33 J/kg with no temperature change), and finally
it cools down as water until an equilibrium temperature is reached. Now while
the steam is losing heat, the glass and the water inside are gaining heat.
You should realize that when a substance melts, it absorbs a certain number of
calories per gram called the Latent Heat of Fusion. When that substance freezes,
it gives up that same number of calories per gram. Similarly, when a substance
boils or evaporates, it absorbs a certain number of calories per gram called the
Latent Heat of Vaporization. Conversely when the substance condenses out of
the gas phase back into the liquid phase, that substance gives up this Latent
Heat of Vaporization. Both melting (freezing) and boiling (condensing) occur
without any temperature change.
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(REVIEW Chapter 17) Thermal Conduction
Heat Flow Model
Thermal conduction through a material is the simplest type of heat transfer
to model, and it follows closely the old “caloric fluid” idea. You can think of
the heat as something in a hot material which is flowing downhill into a colder
material. In reality, since temperature is a measure of the average kinetic energy
of a material, what is happening is that kinetic energy is being transferred from
a hot material to a colder material.

Heat Conductivity Equation
The conduction of heat, H in Joules/second, through a cross-sectional area A
over a length L between a hot region TH and a colder region TC can be calculated
with the heat conductivity equation

H =
dQ

dt
= kA

TH − TC

L

where k is the thermal conductivity constant of the material. Values of k for
different materials are given in Table 17.5 on page 592. Materials with very
low heat conductivities, such as styrofoam or fiberglass, are actually good heat
insulators. On the other hand, metals are good heat conductors especially copper
and silver.

Heat Conductivity Example 17.13
Heat conductivity problems typically have a region of high temperature “reser-
voir” which stays at a constant TH . Similarly there is a region of colder temper-
ature which is at a constant TC . In between these two regions there is a heat
conducting material of end cross sectional area A and length L through which
heat is transferred from the hot reservoir to the colder reservoir. No heat is lost
the sides of the heat conducting material, but heat enters at one end and exits
the other end in a steady-state manner.
In this example a steel bar 10.0 cm long with cross-sectional area A = 4 cm2

has one end in a steam bath at TH = 100o C. The other end of the steel bar is
welded to a copper bar of the same cross sectional area but 20.0 cm long. The
free end of the copper bar is in an ice-water mixture kept at TC = 0o C. What
is the heat flow H through these bars, and what is the temperature TM where
the two bars are welded together?
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Chapter 18: Thermal Properties of Matter
Ideal Gas Law
For an ideal gas the pressure P , the volume V , and the absolute temperature T

are related by the ideal gas law

PV = nRT

where n is the number of moles of the gas, and R is the ideal gas constant. In
the MKS system, R = 8.314 J/mole-K. If pressure is given in atmospheres and
volume in liters, then R = 0.08206 L-atm/mol-K. From these two expressions
for R, it should be obvious that a “liter-atmosphere” has dimensions of energy
(or work).

Kinetic Theory of Ideal Gases
The microscopic physics explanation for the ideal gas law is the Kinetic Theory.
This theory has four assumptions: 1) a volume V of a gas contains a very large
(Avogadro scale) number of identical molecules each of mass m; 2) the molecules
behave as point particles and don’t interact with each other; 3) the molecules
collide elastically with the walls of the container according to Newton’s Laws;
and 4) the pressure developed on the walls comes from these collisions since the
walls are consider to be perfectly rigid and immobile.
Based on these four assumptions, it is possible to derive the ideal gas law and
to get a microscopic interpretation of temperature. Specifically we can derive
that the average kinetic energy of a molecule with mass m in an ideal gas is
proportional to the absolute temperature of the gas

1

2
mv2

average =
3

2
kT =⇒ vaverage =

√

√

√

√

3kT

m

The constant k is called the Boltzmann constant and has a value k = 1.381 ×
10−23 J/molecule-K. The Boltzmann constant is defined as the ideal gas constant
R divided by Avogadro’s number NA

k ≡
R

NA

=
8.314J/mol-K

6.022 × 1023molecules/mol
= 1.381 × 10−23 J/molecule-K
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Consequences of the Kinetic Theory of Gases
Root-Mean-Square Speed of Molecules in an Ideal Gas vrms

The root-mean-square speed vrms for N molecules in an ideal gas turns out to
be:

vrms ≡

√

√

√

√

∑N
i=1 v2

i

N
=
√

v2
average =

√

√

√

√

3kT

m
=

√

√

√

√

3RT

M
where M = NAm which is the molecular weight of one mole of a gas since there
are Avogadro’s number of molecules in one mole. You can now see why the
Earth’s atmosphere is missing a light gas such as helium. The average speed
of a helium molecule in the Earth’s atmosphere, given the temperature T in
the Earth’s atmosphere, would be bigger than the escape velocity of the Earth’s
gravity. Hence any helium in the Earth’s atmosphere is bound to disappear
into outer space. Fortunately for us humans, the average speed of an oxygen
molecule, at the same temperature T , is much slower (by what factor?) than
that of helium, and slower than the escape velocity of the Earth’s gravity. So
the Earth has retained these heavier gas molecules over billions of years.

Mean Free Path
The kinetic theory of molecules in a gas assumes that the molecules do not have
inelastic interactions with each other. The molecules can collide with each other
elastically, and that is how two gases reach an equilibrium temperature.
On pages 624–625 in the text book, there is a short derivation of the mean-free-
path formula. The mean-free-path, with the symbol λ is the average distance
that a molecule can travel in a gas before it collides elastically with a second
molecule. This λ distance depends on the total number of molecules in the gas
volume, and the radius r of the molecules which are taken as spheres:

Mean Free Path: λ =
kT

4π
√

2r2p

where T is the temperature of the gas and p is the pressure of the gas. From the
ideal gas equation you know that T/p is directly proportional to the number of
moles in the gas. For air at standard temperature and pressure, you can work
out (example 18.8 on page 625) that the mean free path is 5.8 × 10−8 m, as
compared with the size of the oxygen molecule which has a radius 2.0×10−10 m.
The mean free path is almost 300 times larger than the radius of the molecule.
You can also work out that the vrms = 484 m/s, meaning that in one second
there will be 1010 collisions. That is 1012 times smaller than Avogadro’s number.
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Kinetic Theory and the Heat Capacities of Gases
Monatomic Gases
Since we know that the average kinetic energy of a gas molecule is directly
proportional to the temperature, it is easy to predict the heat capacities of ideal
gases (see page 626). For monatomic gases, which are essentially point particles,
the heat capacity is given simply by

Monatomic gas molecule: CV =
3

2
R

This (upper case notation) means the number of Joules required to increase the
temperature of one mole of the gas by one K (or Celsius degree), as long as
the gas is kept at constant volume. If the gas is allowed to expand at constant
pressure, there is another heat capacity CP which we will study in Chapter 19.

Diatomic Gases
Diatomic gases, consisting of two molecules such as O2, can also rotate about
their center-of-mass. So adding heat to a diatomic molecule can also produce
rotational energy as well as increase the translational energy. Since only the
translational energy is proportional to the temperature, then there is a different
value for the heat capacity of a diatomic molecule. Nonetheless, there is still a
simple prediction from the kinetic theory

Diatomic gas molecule: CV =
5

2
R

We will be using the molar heat capacities of gases in our studies of the first and
second law of thermodynamics.
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Chapter 19: Heat and the First Law of Thermodynamics

We have seen how heat is a form of energy which can be transferred from one
substance to another when there is a temperature difference. We have also seen
that there is a conservation of total energy law in mechanics which includes
the heating effects of friction. This mechanics law is part of a very general law
of conservation of energy which goes under the name of The First Law of
Thermodynamics. This law has many formulations, but in this chapter it
concerns the total internal energy Uint of a system, and how that total energy
changes when heat ∆Q flows into the system and the system does work W during
the same time

∆Uint = Q − W 19.5

This equation states that the change in internal (total) energy of a system is equal
to the heat added less the work done by that system in the process. The symbol
U was used in mechanics to mean Potential Energy. In thermodynamics Uint
means the internal energy of a system, and only changes in internal energy are
significant. The subscript “int” further emphasizes the thermodynamic meaning.

Thermodynamics is a very important subject because the civilized world essen-
tially runs on converting heat (from burning fuels) into work (making electricity,
running cars, etc.) The simplest system to consider is that of n moles of a gas
for which we have a definite volume V , pressure P , and temperature T

Ideal Gas Law: PV = nRT

A gas can do work by expanding against a piston, for example in the cylinders
of a car engine. In considering how a gas can be affected, we define several types
of processes or operations:
An adiabatic process is one in which no heat is transferred (Q = 0).
An isothermal process is one in which the temperature remains constant.
An isobaric process is one in which the pressure remains constant.
A cyclic process is one in which the gas goes through a series of pressure, volume,
and temperature changes but finally comes back to the same initial conditions
when the cycle is over.

The Work done by an Expanding Volume of Gas: V1 → V2

Important General Formula for Work: W =
∫ V2

V1

P dV
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The Work Done by an Expanding Gas

An expanding gas does work. This is a fundamentally important concept and is
easy to verify. We know already that work is force times distance. So consider a
piston on a gas container which moves out a distance dx when the gas pressure
is P . This represents a net work on the piston

dW = Fdx = (PA)dx = P (Adx) = PdV

where dV is the volume increase in the gas when it expands. Now if the gas
goes from some initial volume Vi to some final volume Vf , the net work is the
integral of the dW

W =
∫

dW =
∫ Vf

Vi

P dV

This is often represents on a P vs V diagram with P as the y axis and V along
the x axis. The work is then the area on the P vs. V curve.

Result for Isothermal Work
As it stands, we cannot do anything with the work equation unless we are told
something about the process of expansion. One possibility is an Isothermal
Expansion for which the temperature is held constant. If that is the case we can
use the Ideal Gas Law to substitute for P in terms of V and the constant T

W =
∫ Vf

Vi

P dV =
∫ Vf

Vi

nRT

V
dV

W = nRT
∫ Vf

Vi

1

V
dV = nRT

[

ln V

]Vf

Vi

= nRT ln

(

Vf

Vi

)

Again, the important point to realize about the above formula for work is that
it applies only to an isothermal expansion or contraction !.
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The Internal Energy of a Gas

In the example of Isothermal Expansion, the gas does work but stays at constant
temperature. Normally when a gas expands, it will cool down, but in this case
we have specified that the temperature remain constant. The only way that
can happen is that heat is added to the gas. If you like, consider that the gas
container in the figure is on some kind of stove top and heat is constantly being
added as the volume expands.

We can quantify this process by introducing the internal energy Uint of a gas
system. The thermodynamic variable Uint is like the potential energy Uint
in mechanics. Its absolute value is not important, only changes in Uint are
physically significant. The variable Uint can be changed by the gas doing work
(Uint decreases), or heat being added to the gas (Uint increases). We write

∆Uint = ∆Q − W

The variable Uint depends only on the temperature of the gas. As long as the
temperature remains constant, then Uint does not change2.

Adiabatic Process
In an isothermal expansion, heat ∆Q must be added to the gas to do work. At the
other extreme is the adiabatic process where no heat is added to the expanding
gas. In this case the internal energy Uint must decrease by an amount equal to
the work done by the expanding gas

Q = 0 adiabatic process =⇒ ∆Uint = −W

In an adiabatic process, the temperature of the gas must be lowered during an
expansion. Generally, processes which happen so fast that there is no time for
heat to be transferred (such as the compression stroke of a diesel engine, or the
expansion of hot gases in a gasoline engine) are examples of adiabatic processes.
Another example would be a well–insulated system such as the gas liquefaction
in a refrigerator.

2The textbook uses only the symbol U for internal energy. I have added a subscript “int” in order to emphasize

that Uint represents the internal energy in a thermodynamic system.
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Heat Capacities for an Ideal Gas
Heat Capacity Definitions and Relations
The specific heat or heat capacity c of a solid or a liquid was defined according
to how much heat Q was needed to raise a given mass m of the substance by
one K (or one Celsius degree):

Q = mc∆T

For an ideal gas, it is more useful to use either the 1) the molar heat capacity at
constant volume called CV , or 2) the molar heat capacity at constant pressure
called CP . We shall discover universal values for CV and a universal equation
relating CP to CV .
The molar heat capacity at constant volume CV for a gas is defined according
to the differential amount of heat dQ needed increase n moles of a gas by an
amount dT in Kelvin at constant volume of the gas:

dQ = nCV dT 19.12

Since the volume of the gas does not change, then all of this heat increases the
internal energy of the gas

dUint = nCV dT

The molar heat capacity at constant pressure CP for a gas is defined according
to the differential amount of heat dQ needed increase n moles of a gas by an
amount dT in Kelvin while the gas expands by a volume dV while the pressure
p of the gas remains constant:

dQ = nCpdT 19.14

Now while the gas expands at constant pressure, there is a differential amount
of work done dW = pdV = nRdT . Since by conservation of energy (first law of
thermodynamics) we have

dQ = dUint + dW = nCV dT + nRdT = nCpdT 19.16

then we can see directly that

Universal relation for ideal gas molar heat capacities: Cp = CV + R 19.17
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Molar Heat Capacities for Ideal Gases
Monatomic Gas Result
For monatomic gases, the Kinetic Theory predicts that CV = 3R/2. By the
universal ideal gas result we have

Cp = CV + R =
3

2
R + R =

5

2
R

An important parameter for an ideal gas is the ratio Cp/CV which is symbolized
as γ

γ ≡
Cp

CV

=
5/2R

3/2R
=

5

3
R ≈ 1.67R

Diatomic Gas Result
For diatomic gases, the Kinetic Theory predicts that CV = 5R/2. By the uni-
versal ideal gas result we have

Cp = CV + R =
5

2
R + R =

7

2
R

γ ≡
Cp

CV

=
7/2R

5/2R
=

7

5
R = 1.40R

Adiabatic Ideal Gas Law
The parameter γ is an important one for the adiabatic ideal gas law. You
already know the ideal gas law, relating three parameters: p, V , and T as:

pV = nRT

If a gas is undergoing an adiabatic change,we can prove (see pages 662-663) the
following adiabatic ideal gas law

p1V
γ
1 = p2V

γ
2 or pV γ = Constant 19.23

As you can see, the adiabatic gas law relates two of the three parameters. You
can predict the third via the regular ideal gas law. You can re-write the adiabatic
gas law in terms of T and V as

T1V
γ−1
1 = T2V

γ−1
2 or TV γ−1 = Constant

In the above formulas, the change in the state of the gas is adiabatic, meaning
that no heat entered or left the gas.
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Work Done During an Adiabatic Gas Expansion
Using the adiabatic ideal gas law
We use the adiabatic ideal gas law to get an expression for the work done by a
gas in going from a state (p1, V1) to a state (p2, V2) in an adiabatic change:

pV γ = C =⇒ p =
C

V γ

W1→2 =
∫ 2

1
pdV = C

∫ V2

V1

dV

V γ
= C

1

γ − 1





1

V γ−1
1

−
1

V γ−1
2





Since the constant C = p1V
γ
1 = p2V

γ
2 we will get a final simple result as

Work done in an adiabatic gas change: W1→2 =
1

γ − 1
(p1V1 − p2V2)

Example of Adiabatic Compression and Work, page 697
The piston in a car’s diesel engine compresses the volume a fuel-air mixture by a
factor of 15. Suppose the initial pressure is one atmosphere (1.01× 105 Pa), and
the initial temperature is 27o C (300 K). Find the final pressure and temperature
of the fuel-air mixture, assuming that it is a diatomic gas with a γ = 1.40.
We use the adiabatic gas law

p1V
γ
1 = p2V

γ
2 =⇒ p2 =

(

V1

V2

)γ

p1 = (15)1.40(1.01 × 105) = 44.8 × 105 Pa

This result is 44 atmospheres, which tells you why diesel engines are so heavy
to be able to withstand such high pressures.
We can work out the final temperature from T1V

γ−1
1 = T2V

γ−1
2 , where T1 =

300 K. From this equation we will get T2 = 886K K or T2 = 613o C. The
temperature almost triples in absolute terms.
How much work is done by the gas in this compression if V1 = 10−3 m3 (= 1 L)?
We have for the work done in an adiabatic change

W1→2 =
1

γ − 1
(p1V1 − p2V2) = −494 Joules

Work is being done on the gas during any compression. It is the angular mo-
mentum of the rotating drive shaft in the car which is doing this work. After the
piston is compressed, the high temperature will self-ignite the fuel-air mixture;
there is no spark plug in a diesel engine. That will deliver more power to turn
the drive shaft and eventually the wheels.


