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Chapter 18: The Internal Energy of a Gas

In the example of Isothermal Expansion, the gas does work but stays at constant
temperature. Normally when a gas expands, it will cool down, but in this case
we have specified that the temperature remain constant. The only way that
can happen is that heat is added to the gas. If you like, consider that the gas
container in the figure is on some kind of stove top and heat is constantly being
added as the volume expands.

We can quantify this process by introducing the internal energy Uint of a gas
system. The thermodynamic variable Uint is like the potential energy Uint
in mechanics. Its absolute value is not important, only changes in Uint are
physically significant. The variable Uint can be changed by the gas doing work
(Uint decreases), or heat being added to the gas (Uint increases). We write

∆Uint = ∆Q − W

The variable Uint depends only on the temperature of the gas. As long as the
temperature remains constant, then Uint does not change1.

Adiabatic Process

In an isothermal expansion, heat ∆Q must be added to the gas to do work. At the
other extreme is the adiabatic process where no heat is added to the expanding
gas. In this case the internal energy Uint must decrease by an amount equal to
the work done by the expanding gas

Q = 0 adiabatic process =⇒ ∆Uint = −W

In an adiabatic process, the temperature of the gas must be lowered during an
expansion. Generally, processes which happen so fast that there is no time for
heat to be transferred (such as the compression stroke of a diesel engine, or the
expansion of hot gases in a gasoline engine) are examples of adiabatic processes.
Another example would be a well–insulated system such as the gas liquefaction
in a refrigerator.

1The textbook uses only the symbol U for internal energy. I have added a subscript “int” in order to emphasize

that Uint represents the internal energy in a thermodynamic system.
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Chapter 18: Heat Capacities for an Ideal Gas
Heat Capacity Definitions and Relations

The specific heat or heat capacity c of a solid or a liquid was defined according
to how much heat Q was needed to raise a given mass m of the substance by
one K (or one Celsius degree):

Q = mc∆T

For an ideal gas, it is more useful to use either the 1) the molar heat capacity at
constant volume called CV , or 2) the molar heat capacity at constant pressure
called CP . We shall discover universal values for CV and a universal equation
relating CP to CV .
The molar heat capacity at constant volume CV for a gas is defined according
to the differential amount of heat dQ needed increase n moles of a gas by an
amount dT in Kelvin at constant volume of the gas:

dQ = nCV dT 19.12

Since the volume of the gas does not change, then all of this heat increases the
internal energy of the gas

dUint = nCV dT

The molar heat capacity at constant pressure CP for a gas is defined according
to the differential amount of heat dQ needed increase n moles of a gas by an
amount dT in Kelvin while the gas expands by a volume dV while the pressure
p of the gas remains constant:

dQ = nCpdT 19.14

Now while the gas expands at constant pressure, there is a differential amount
of work done dW = pdV = nRdT . Since by conservation of energy (first law of
thermodynamics) we have

dQ = dUint + dW = nCV dT + nRdT = nCpdT 19.16

then we can see directly that

Universal relation for ideal gas molar heat capacities: Cp = CV + R 19.17
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Chapter 18: Molar Heat Capacities for Ideal Gases
Monatomic Gas Result

For monatomic gases, the Kinetic Theory predicts that CV = 3R/2. By the
universal ideal gas result we have

Cp = CV + R =
3

2
R + R =

5

2
R

An important parameter for an ideal gas is the ratio Cp/CV which is symbolized
as γ

γ ≡
Cp

CV

=
5/2R

3/2R
=

5

3
R ≈ 1.67R

Diatomic Gas Result

For diatomic gases, the Kinetic Theory predicts that CV = 5R/2. By the uni-
versal ideal gas result we have

Cp = CV + R =
5

2
R + R =

7

2
R

γ ≡
Cp

CV

=
7/2R

5/2R
=

7

5
R = 1.40R

Adiabatic Ideal Gas Law

The parameter γ is an important one for the adiabatic ideal gas law. You
already know the ideal gas law, relating three parameters: p, V , and T as:

pV = nRT

If a gas is undergoing an adiabatic change,we can prove (see pages 662-663) the
following adiabatic ideal gas law

p1V
γ
1 = p2V

γ
2 or pV γ = Constant 19.23

As you can see, the adiabatic gas law relates two of the three parameters. You
can predict the third via the regular ideal gas law. You can re-write the adiabatic
gas law in terms of T and V as

T1V
γ−1
1 = T2V

γ−1
2 or TV γ−1 = Constant

In the above formulas, the change in the state of the gas is adiabatic, meaning
that no heat entered or left the gas.
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Chapter 18: Work Done During an Adiabatic Gas Expansion
Using the adiabatic ideal gas law

We use the adiabatic ideal gas law to get an expression for the work done by a
gas in going from a state (p1, V1) to a state (p2, V2) in an adiabatic change:

pV γ = C =⇒ p =
C

V γ

W1→2 =
∫ 2

1
pdV = C

∫ V2

V1

dV

V γ
= C

1

γ − 1





1

V γ−1
1

−
1

V γ−1
2





Since the constant C = p1V
γ
1 = p2V

γ
2 we will get a final simple result as

Work done in an adiabatic gas change: W1→2 =
1

γ − 1
(p1V1 − p2V2)

Example of Adiabatic Compression and Work, page 697

The piston in a car’s diesel engine compresses the volume a fuel-air mixture by a
factor of 15. Suppose the initial pressure is one atmosphere (1.01× 105 Pa), and
the initial temperature is 27o C (300 K). Find the final pressure and temperature
of the fuel-air mixture, assuming that it is a diatomic gas with a γ = 1.40.
We use the adiabatic gas law

p1V
γ
1 = p2V

γ
2 =⇒ p2 =

(

V1

V2

)γ

p1 = (15)1.40(1.01 × 105) = 44.8 × 105 Pa

This result is 44 atmospheres, which tells you why diesel engines are so heavy
to be able to withstand such high pressures.
We can work out the final temperature from T1V

γ−1
1 = T2V

γ−1
2 , where T1 =

300 K. From this equation we will get T2 = 886K K or T2 = 613o C. The
temperature almost triples in absolute terms.
How much work is done by the gas in this compression if V1 = 10−3 m3 (= 1 L)?
We have for the work done in an adiabatic change

W1→2 =
1

γ − 1
(p1V1 − p2V2) = −494 Joules

Work is being done on the gas during any compression. It is the angular mo-
mentum of the rotating drive shaft in the car which is doing this work. After the
piston is compressed, the high temperature will self-ignite the fuel-air mixture;
there is no spark plug in a diesel engine. That will deliver more power to turn
the drive shaft and eventually the wheels.



Lecture 24: Heat Engines and the Second Law of Thermodynamics 5

Chapter 20: Heat Engines
The concept of a heat engine is crucial to modern civilization. Heat engines,
beginning with James Watt’s invention of the steam engine, are the basis of
the mechanical age where machines do work. The vast majority of machines
which produce useful work do so ultimately by burning fuel and converting the
chemical potential energy stored in the fuel into heat and then converting that
heat into work.

Thermodynamic Limits to Heat Engines

The First Law of Thermodynamics states the equivalence of all forms of
energy, and the equivalence of heat and work as different forms of energy which
must be conserved. In principle, according to the First Law of Thermodynamics,
it should be possible to convert all the heat energy into useful work. In reality,
this is found to be impossible. There are fundamental limits to how much work
can be extracted from a given amount of heat in any real device, and the rest of
the energy must unfortunately be wasted. This is the Second Law of Ther-

modynamics.

Ultimate Efficiency of Heat Engines

All real heat engines perform work by extracting heat Qh from a hot source at
temperature Th, converting part of that heat into work W , and then discarding
an amount of heat Qc into a cold sink at temperature Tc. According to the First

Law W = Qh−Qc, and according to the Second Law, the efficiency ε ≡ W/Qh

is limited according to the range of absolute temperatures in use:

ε ≡
W

Qh

=
Qh − Qc

Qh

≤
TH − Tc

Th

Because all real engines must expel an amount of heat Qc into a cold sink at
temperature Tc, then all real engines are (much) less than 100% efficient. A good
example is that of a car engine, where the “hot source” is the burning gasoline,
and the “cold sink” is just the exhaust into the atmosphere.
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Chapter 20: The Second Law of Thermodynamics

Things that you will never see happen

If you want to make yourself some tea, the first thing you have to do is boil some
water. So you put some water in tea kettle on the burner of a stove. Lastly,
you turn on the burner of the stove. You do this because of the Second Law of
Thermodynamics. If there were no Second Law, and one had only the First Law
(conservation of energy), there would be nothing to prevent the burner of the
stove from getting colder and the kettle getting hotter. According to the First
Law, then, heat could spontaneously be transferred from cold material to hot
material, without violating conservation of energy. In reality, we instinctively
know that this is not true. Hot substances will lose their heat to cold substances,
never the reverse.

Principles of a Heat Engine

The concept of the Second Law of Thermodynamics can be made more
practical by considering the general form of the heat engine, which is any device
which converts heat into work. Heat energy Qh is extracted from a hot source
at Th, part of that energy is converted into work W by the heat engine, and the
remainder of the heat Qc = Qh−W is expelled into the cold sink at Tc. The heat
engine operates in some continuous cycle, always returning to its initial state.
The first Law of Thermodynamics states that the work done is the difference
in the extracted and the expelled heats: W = Qh − Qc. The Second Law of
Thermodynamics states that there must always be a certain amount of expelled
(wasted) heat Qc in proportion to the temperature difference Th−Tc. The Second
Law sets an unavoidable limit on the efficiency of any heat engine operating
between any two temperatures Th and Tc. All real engines have actual efficiencies
less than this limit.
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Examples of Heat Engines
Sample Gasoline Engine Problem

In a given cycle a gasoline engine consumes 10,000 Joules of heat in order to
produce 2,000 Joules of mechanical work, such as moving a car from rest to a
certain kinetic energy. The heat is obtained by burning gasoline which produces
50,000 Joules/gram.

1) What is the efficiency of this engine?

2) How much heat is discarded at the end of each cycle?

3) How much gasoline is burned in each cycle?

4) If the engine runs at 25 cycles/second, what is the power during that time?

5) How much gasoline is burned per second?

Solution

1) The efficiency of any heat engine is the ratio of the work done to the heat en-
ergy taken in. In this case QH = 10, 000 Joules is taken in and 2,000 Joules
of work W are produced. So the efficiency is

Heat Engine Efficiency: ε =
W

QH

=
2000

10000
= 0.20 = 20%

2) If 10,000 Joules of heat is taken in and 2,000 Joules of work is produced,
then 8,000 Joules of heat is being discarded for each cycle.

QC = QH − W = 10000 − 2000 = 8000 Joules

3) One gram of gasoline will produce 50,000 Joules of heat. So only 0.20 grams
of gasoline is needed to produce 10,000 Joules of heat per cycle.

4) If the engine is running at 25 cycles per second, then it is developing 25 ∗

2, 000 = 50, 000 Joules/second or 50 kW of power.

5) The amount of gasoline burned per second is the amount of gasoline burned
per cycle times the number of cycles per second. We will get

0.20 × 25 = 5.0 grams/second

In part 1) a 20% efficiency does not sound too impressive. Effectively, if you are
paying $3.30 per gallon of gasoline, then you are discarding $2.64 of the energy
in each gallon of gas. Can you hope to do better?
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Realistic Model of a Gasoline Engine
The Otto Cycle

The Otto Cycle is an idealized model of how a real gasoline engine works. As
with any engine model, we show the cycle in a pV pressure-Volume diagram
(figure 20.6, page 679). The Otto Cycle has four lines in such a pV diagram.

1) A gas-air mixture in a piston is compressed adiabatically from point a with
(pa, Va) to point b with (pb, Vb). The compression occurs so rapidly that
effectively no heat enters or leaves the piston. The compression ratio is
r = Va/Vb which is typically 8 in an ordinary gasoline engine.

2) At point b the gas-air mixture is ignited by a spark plug. The ignition of
the gas-air mixture occurs extremely rapidly, liberating a great deal of heat
energy, raising the temperature of the mixture. The gas-air mixture goes to
a new point c in the pV diagram, but the volume remains constant during
this very short amount of time. So at point c we have (pc, Vc) with pc > pb

and Vc = Vb.

3) The hot gas-air mixture expands adiabatically to a new point d, where the
volume is the original piston volume and the pressure and temperature are
lowered. The point d has (pd, Vd) with Vd = Va. This is the power stroke to
the drive shaft of the engine.

4) The last stroke is the exhaust stroke, where the spent gas-fuel mixture
is expelled from the piston’s volume. In this stroke the volume remains
constant while the pressure and temperature drop to the initial values at
point a in the pV diagram.

The efficiency of the Otto cycle is examined in detail on page 670. The final
result is the following simple formula

Efficiency of an Otto cycle gas engine: ε = 1 −
1

rγ−1
≈ 0.56 = 56%

where γ = 1.40 for the gas-air mixture, and r is the compression ratio of the
piston. You can see that higher values of r will lead to better efficiencies. Un-
fortunately, higher values of r also lead to more air pollution and need more
expensive gasoline grades. So ordinary modern day cars, as distinct from race
cars, have a relatively low ratio value r ≈ 8. Nonetheless, you can see that a
real gasoline engine with a 20% efficieny is much lower than the ultimate limit
for a gasoline engine. The most efficient gas engines are at about 35%.
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Realistic Model of a Diesel Engine

The Diesel Cycle

The diesel cycle (Fig. 20.7, page 680) is quite similar to the gasoline engine
cycle, with one important difference. At the end of the adiabatic compression
stroke of a diesel engine, there is no ignition by a spark plug. There is also no
fuel in the piston during the compression stroke. Instead, after the compression
stroke is introduced, and the temperature has become very high (see page 4 of
these notes, or page 697 in the text), then diesel fuel is carefully injected into
the piston over a very brief period of time. The pressure stays approximately
constant while the fuel is ignited by the high temperature of the air. After the
fuel is ignited, there is a power stroke as in the gasoline engine.
One can work out (but the textbook does not), that the efficiency of a diesel
engine higher than that of a gasoline engine. With a compression ratio r =
15 −−20, the theoretical efficiency of a diesel engine is between 65% and 75%,
compared to the theoretical efficiency of 56% of a gasoline engine. Just as with
the gasoline engines, a real diesel engine will have a significantly lower efficiency,
but one can always hope to get better efficiencies with improved engine design
and materials.


