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REVIEW: Vectors and Scalars

Some quantities in physics such as mass, length, or time are called scalars.
A quantity is a scalar if it obeys the ordinary mathematical rules of addition
and subtraction. All that is required to specify these quantities is a magnitude
expressed in an appropriate units.

A very important class of physical quantities are specified not only by their
magnitudes, but also by their directions. Perhaps the most important of these
quantities is FORCE. Consider a heavy trunk on a smooth (almost slippery)
floor, weighing say 100 pounds. You want to move the trunk but you are only
able to lift 50 pounds.

What do you do?

A vector must always be specified by giving its magnitude and direction. In
turn the vector’s direction must be given with respect to some known direction
such as the horizontal or the vertical direction, or perhaps with respect to some
pre–defined “X” axis.

The specification of the magnitude and direction does not have to be direct or
explicit. The specification can be indirect or implicit by giving the “X” and “Y”
components of the vector, and it is up to you to use the Pythagorean theorem
to calculate the actual magnitude and direction.
(Do you remember your trigonometry?)

1) What is a right triangle ? How many degrees are there in a triangle ?

2) What are the definitions of sine, cosine, and tangent ?

3) What is the Pythagorean theorem ?

4) What is the law of sines ?

5) What is the law of cosines ?

6) What is a radian ?
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REVIEW: Multiplication of a Vector by a Scalar

The easiest type of multiplication is that of a vector by a scalar. This always
produces another vector.
Be careful – multiplication of a vector by a scalar is NOT the same as scalar
multiplication of two vectors which is covered in Chapter 6.

There are two possibilities depending on whether the scalar is dimensionless or
has dimensions. If the scalar is dimensionless, that is a pure number, than the
multiplication simply enlarges (or reduces) the original vector if the scalar is
bigger (or less) than 1.0 .

If the scalar has dimensions, then the result is a new type of vector because the
product will have different dimensions than the original vector. So it does not
make any sense to say “larger” or “smaller” in this type of multiplication.
One of the most important laws in mechanics involves the multiplication of a
vector by a scalar. This is Newton’s Second Law of Motion given by:

~F = m~a

Here ~F is a force vector and ~a is an acceleration vector. The scalar m is the
mass. All three of these physical quantities have different dimensions, and this
multiplication of a vector by a scalar effectively turns an acceleration vector into
a force vector.

The usefulness of the vector notation comes about when it is realized that a sim-
ple equation such as Newton’s Second Law is actually three separate equations:

~F = m~a =⇒ Fx ı̂ = max ı̂ =⇒ Fy ĵ = may ĵ =⇒ Fz k̂ = maz k̂

This means that the motions in the x, y, and z directions are independent of one
another, and the study of the problem of motion in one, two, or three dimensions
can be very much simplified.
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REVIEW: Analytic Addition of Vectors using Vector Components

The graphical addition of vectors is not terribly convenient, especially if a nu-
merical solution is required. Much more often you will have to add vectors
analytically. By that is meant that you first resolve the vectors into their per-
pendicular components, then add the components by ordinary mathematics,
and finally reconstitute the resultant with trigonometry and the Pythagorean
theorem.

Instead of one vector ~A, now take another vector ~B
Let’s say ~A is at an angle α, and ~B is at an angle β

The vector sum of ~A and ~B is denoted by ~R

~R = ~A + ~B

This can be solved component–by–component

Rx = Ax + Bx

Ry = Ay + By

Now solve for ~R. First the magnitude

R =
√

R2
x + R2

y =
√

(Ax + Bx)2 + (Ay + By)2

And now the direction of ~R which we symbolize as γ

γ = tan−1
Ry

Rx

= tan−1
(Ay + By)

(Ax + Bx)
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REVIEW: Analytic Addition of Vectors using Vector Components

The graphical addition of vectors is not terribly convenient, especially if a nu-
merical solution is required. Much more often you will have to add vectors
analytically. By that is meant that you first resolve the vectors into their per-
pendicular components, then add the components by ordinary mathematics,
and finally reconstitute the resultant with trigonometry and the Pythagorean
theorem.

TABLE FORM OF ANALYTIC ADDITION

Vector Angle Magn. of x component Magn. of y component
~A α A cos α A sin α
~B β B cos β B sin β
~R γ = tan−1 Ry

Rx

Rx = A cos α + B cos β Ry = A sin α + B sin β

Worked Example
A hiker walks 25 km due southeast (= −45o) the first day, and 40 km at
60o north of east. What is her total displacement for the two days?

Arrange the problem in the table above with ~A being the first day’s displacement
and ~B being the second day’s displacement:

Vector Angle Magn. of x component Magn. of y component
(km) (o) (km) (km)

A = 25 −45 A cos (−45) = A sin (−45) =
B = 40 +60 B cos (+60) = B sin (+60) =

R = γ = tan−1 Ry

Rx

= Rx = Ry =
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REVIEW: Analytic Addition of Vector Components

Worked Example
You are given a displacement of 20 km to the West, and a second displacement
at 10 km to the North. What is the sum of the two displacements?

Vector Angle Magn. of x component Magn. of y component
(km) (o) (km) (km)

Vector Angle Magn. of x component Magn. of y component
(km) (o) (km) (km)

A = 20 +180 A cos (+180) = A sin (+180) =
B = 10 +90 B cos (+90) = B sin (+90) =

R = γ = tan−1 Ry

Rx

= Rx = Ry =

WARNING Know your quadrants !!
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CHAPTER 2: Motion in One Dimension
Kinematics is the study of motion by relating the position of a particle to the
instant of time for which the particle is at that position.

The relevant (vector) physical quantities for kinematics are:
1) Displacement (≡ ∆X = x2 − x1 in one dimension)
2) Velocity (average or instantaneous)
3) Acceleration (average or instantaneous)

The average velocity of a particle is the displacement of a particle divided by
the time over which that displacement occurred:

~v ≡
∆~x

∆t
=

~x2 − ~x1

t2 − t1

The average velocity is always defined over some specified time interval.

The instantaneous velocity is the limit of the average velocity as the time
interval approaches 0.

~v(t) ≡ lim
∆t→0

∆~x

∆t

Note: the instantaneous velocity is always defined at a specific time instant.

Acceleration: One proceeds one step further, and defines the average and
instantaneous accelerations exactly analogously to the velocity definitions.
The average acceleration of a particle is the change in the particles velocity
divided by the time over which that velocity change occurred

~a ≡
∆~v

∆t
=

~v2 − ~v1

t2 − t1

The average acceleration is always defined over some specified time interval.
The instantaneous acceleration is the limit of the average acceleration as the
time interval approaches 0.

~a(t) ≡ lim
∆t→0

∆~v

∆t

Note: the instantaneous acceleration is always defined at a specific time instant.
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Definition of AVERAGE VELOCITY

You leave Vanderbilt one Saturday afternoon in your car on the way to Knoxville
to see VU play UT basketball at 8:00 P.M. Your departure time is exactly
5:00 P.M. so you’re running a little late (because of all that extra studying.)
Unfortunately, at exactly 6:30 P.M. just past Cookeville on I40, you see those
blue lights flashing in your rear view mirror. You have been clocked doing 75
miles/hour as a blip on a radar gun. You begin to plan your defense.

A displaced person
One dimensional motion (I40 is mostly East–West), call the coordinate X
Initial position, Nashville, Xi, Final position, Cookeville, Xf

Your displacement vector then is:

∆ ~X = ~Xf −
~Xi

What is the direction of your displacement vector ?
What is the magnitude of your displacement vector ?
Nashville–to–Cookeville = 80 miles (Exit 208 to Exit 288).
=⇒ Displacement vector = 80 miles, East

Your average velocity ~V

~V ≡
∆~X

∆t
=

~Xf −
~Xi

tf − ti
=

80 miles, East

1.5 hours
= 53.3

miles

hour
, East

The average velocity

1) must always specify a particular time interval

2) is the ratio of the displacement vector over the time interval

3) has the same direction as the displacement vector

The defense
So the radar gun must have been wrong because you can prove that your average
velocity was only 53.3 miles/hour. Not only are you law–abiding, but you are
also energy conscious. (The judge knows kinematics, you lose.)
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The Instantaneous Velocity
The average velocity, or the average speed, does not tell us anything about
the speed or velocity at any particular time. It is a physical quantity which is
computed over an interval of time. In fact, if you had returned to Nashville for
some reason, your average velocity would be zero. Why ?

In order to know the speed or velocity at any given instant of time, we must
have another quantity the instantaneous velocity
The instantaneous velocity is the limit of the average velocity as the time
interval approaches 0.

~v(t) ≡ lim
∆t→0

∆~x

∆t

Note: the instantaneous velocity is always defined at a specific time instant.
Putting that calculus to work, you recognize what that limit really is

~v(t) ≡ lim
∆t→0

∆~x

∆t
=

d~x

dt

In one dimension we can drop the vector notation, and rewrite this for the
average speed:

v(t) ≡ lim
∆t→0

∆x

∆t
=

dx

dt

The instantaneous speed is defined at a particular instant of time. It is equal to
the slope of the position function x(t). In order to calculate the instantaneous
speed, you need to know the position function, x(t), at each and every instant
of time t. This can be best shown by having a graph of x(t) as a function of t.
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Average and Instantaneous Velocity
Worked Example A particle moves along the x axis. Its x coordinate in meters
varies with time t in seconds according to

x(t) = −4t + 2t2

a) What is the displacement of the particle over the interval from t = 0 to t = 1?
second, and over the interval from t = 1 to t = 3
Solution For each time interval we calculate the position vector at the beginning
and at the end of the interval, and then we take the difference:

~∆x01 ≡ ~x1 − ~x0

~x0 = ~x(t = 0) = (−4(0) + 2(0)2) ı̂ = 0

and ~x1 = ~x(t = 1) = (−4(1) + 2(1)2) ı̂ = −2 ı̂

Take the difference: ~x1 = −2 ı̂ less ~x0 = 0 =⇒ ~∆x01 = −2 ı̂ meters

Next calculate ~∆x13 ≡ ~x3 − ~x1

~x3 = ~x(t = 3) = (−4(3) + 2(3)2) ı̂ = 6 ı̂

=⇒ ~∆x13 = 6 ı̂ − (−2) ı̂ = 8 ı̂ meters

b)What is the average velocity during the above two time intervals?
Solution The average velocity is the average displacement divided by the time
over which that displacement occurred:

~v01 =
~∆x01

1 − 0
=

−2 ı̂

1
− 2 ı̂ m/s

Similarly, for the interval from t = 1 to t = 3 seconds:

~v13 =
~∆x13

3 − 1
=

+8 ı̂

2
+ 4 ı̂ m/s

What is the instantaneous velocity at t = 2.5 seconds?
Solution We must take the tangent of the x versus t plot at the value of t =
2.5 seconds in order to get the instantaneous velocity. Depending on how good
we align that slope, we should find that ~v = +6 ı̂ m/s.
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Graph of Position vs Time: x(t) = -4t + 2t*t
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Graph of Speed vs Time: v(t) = dx/dt = -4 + 4t

Figure 1: a) The upper graph shows the position of a particle as a function of time where the
particle’s position is given by the function x(t) = −4t+2t2. b) The lower graph shows the speed
of the same particle, where the equation for the speed is obtained as the first time derivative of
the position function.
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Instantaneous Velocity
We have seen that the instantaneous velocity in one dimension is given by

v(t) ≡ lim
∆t→0

∆x

∆t
=

dx

dt

Let us now apply this definition to the previous example where we had

x(t) = −4t + 2t2

Derivative Calculation
Taking the derivative should be easy enough

v(t) ≡
dx

dt
= −4 + 4t

If we want the speed at t = 2.5 seconds, we just substitute in the formula:

=⇒ v(t = 2.5) = −4 + 4(2.5) = 6 m/s

Explicit Limit Calculation
For the explicit limit calculation we will start at an initial time t and go to a
final time t + ∆t. We have to calculate ∆x in this interval where we symbolize
the initial value of x by xi and the final value of x by xf . We get first

xi(t) = −4t + 2t2

The final value of xf is given by

xf(t + ∆t) = −4(t + ∆t) + 2(t + ∆t)2 = −4t − 4∆t + 2t2 + 4t∆t + 2(∆t)2

The displacement ∆x is then given by

∆x = xf(t + ∆t) − xi(t)

∆x = −4t − 4∆t + 2t2 + 4t∆t + 2(∆t)2
− (4t + 2t2)

∆x = −4∆t + 4t∆t + 2(∆t)2

Now we divide this ∆x by ∆t to get the average velocity

v ≡
∆x

∆t
=

−4∆t + 4t∆t + 2(∆t)2

∆t
= −4 + 4t + 2∆t

Finally, we take the limit as ∆t → 0

lim
∆t→0

v = lim
∆t→0

(−4 + 4t + 2∆t) = −4 + 4t

This is the same expression as we obtained directly above using calculus.
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Acceleration
We have seen that the velocity of a particle is the time rate of change of the
position. There is also a physical quantity which is the time rate of change of
velocity. That quantity is called the acceleration

Average acceleration
The average acceleration is analogous to the average velocity:

aif ≡
vf − vi

tf − ti
=

∆v

∆t

Like the average velocity, the average acceleration must be over a specified time
interval and not a a particular time instant.

Instantaneous acceleration
The instantaneous acceleration is analogous to the instantaneous velocity:

a(t) ≡ lim
∆t→0

∆v

∆t

By your knowledge of calculus, you can re–write this as

a(t) =
dv(t)

dt
=

d

dt
(
dx(t)

dt
) =

d2x(t)

dt2

In order to compute the instantaneous acceleration, you need to know the ve-
locity function of time v(t), or the position function of time x(t).

Remember
Velocity is the first time derivative of the position function x(t)

Acceleration is the first time derivative of the velocity function v(t)
Acceleration is therefore the second time derivative of the position function x(t)

Almost all the problems you will work out in the beginning of the semester have
either zero for the acceleration, or a constant value for the acceleration.
In particular you will most often have to solve problems where the constant ac-
celeration is that due to gravity.
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CONSTANT Acceleration Equations of Motion
Velocity equation v(t) in terms of v0 and a
If the acceleration is constant, then the average value of the acceleration equals
the instantaneous value of the acceleration. So, for constant acceleration a over
an interval t = 0 to some final value t = t

a(t) = a =
v(t) − v(t = 0)

t
=⇒ v(t) = v0 + at 2.8

The speed at a time t equals the initial speed plus the product of the constant
acceleration times the elapsed time.

Position Equation x(t) in terms of v0 and v(t)
With constant, non–zero acceleration, the velocity changes with time according
to the previous equation. However the velocity is linear with time, so that means
that the average velocity over a time interval is one–half the initial plus the final
velocities:

vif =
1

2
(vf + vi) 2.10

This is true for any time interval, as long as the acceleration remains constant.
Let us now choose a particular time interval, ti = 0, and tf = t, and re–write
the above as:

v =
1

2
(v(t) + v0)

But we know that the average velocity is also the rate of change of the position
function x(t)

v =
x(t) − x0

t
Equating these two equations one will obtain

x(t) − x0 =
1

2
(v(t) + v0)t

We then substitute for v from Eq. 2.7 into Eq. 2.9 to obtain

x(t) − x0 =
1

2
(v0 + at + v0)t =⇒

x(t) − x0 = v0t +
1

2
at2 2.12

The Third Kinematic Equation for Constant Acceleration
What result will you get by eliminating the time t parameter given the two
previously derived equations 2.8 and 2.12?


