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REVIEW: Free Fall From Chapter 2
Free Fall is the vertical motion of a particle where only the CONSTANT accel-
eration due to gravity is acting.

If air resistance can be neglected, all bodies fall to the Earth’s surface with the
same acceleration.

Prior to the time of Galileo, it was believed that more massive objects fall to the
Earth more quickly than do lighter objects. The most extreme example would
be a feather and a cannonball.
Legend has it that Galileo climbed to the top of the leaning tower of PISA,
and dropped two objects of very different masses from the top of the tower at
the same time. For all practical purposes, all the objects not affected by air
resistance arrived at the same time on the ground.

Thought Questions on Free Fall
Consider a ball thrown vertically upward.

• During what parts of the motion is the ball in free fall?

• What is the value of the acceleration vector at the maximum height of the
motion when the ball has momentarily stopped?

• Is there a change in sign of the acceleration vector from when the ball is
rising to when the ball is falling?
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REVIEW: The SUPER–IMPORTANT kinematic equations of motion
In ONE dimension with CONSTANT acceleration

Most important use: FREE FALL – constant acceleration of earth’s gravity

v(t) ≡ the speed of a particle at any time t

v(t) = v0 + at (2.8)

t ≡ the time parameter (in units of seconds for example)
v0 ≡ the initial (at t = 0) speed of the particle (in m/s for example)

a ≡ the constant acceleration (in m/s2 for example)

x(t) ≡ the position of a particle at any time t

x(t) = x0 + v0t +
1

2
at2 (2.12)

x0 ≡ the initial (at t = 0) position of the particle (in m for example)

v(t) ≡ the speed of a particle at any position x(t)

v2(t) = v2
0 + 2a(x(t)− x0) (2.13)

Special case of FREE FALL
Constant acceleration downwards = −g = -9.8 m/s2 = -32 ft/s2

By convention we write the position coordinate as y(t) indicating the vertical
direction (up is positive).

v(t) = v0 − gt 2.8a

y(t) = y0 +
1

2
(v(t) + v0)t 2.12a

v2(t) = v2
0 − 2g(y(t)− y0) 2.13a
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Constant Acceleration: Another Worked Example in One Dimension

A sports car is traveling along a straight road at 140 km/hr. When the brakes
are applied, it undergoes a uniform negative acceleration (deceleration) which
slows it down to 70 km/hr in a distance of 200 m. a) What is the acceleration of
the sports car? b) If it continues to accelerate at this rate how far will it travel
while its speed decreases from 70 to 35 km/hr? c) How far does it travel as its
speed changes from 140 km/hr to 0?

First realize that this is a constant horizontal acceleration problem so that the
three kinematic equations of motion apply.
Second, ask what do you know (and what don’t you know)?
You know (for part a) the initial and final positions: x0 = 0, xf = 200 meters
You know (for part a) the initial and final speeds: v0 = 140, vf = 70 km/hr
You don’t know the value of a nor any of the times except t0 = 0.

What is the acceleration of the sports car

First review the three main kinematic equations to find which is suitable

x(t) = x0 + v0t +
1

2
at2 (don’t know the times nor a)

v(t) = v0 + at (don’t know the times nor a)

v2(xf) = v2
0 + 2a(xf − x0) (know all except a so we choose this equation

To solve part a) just put in the values which you know

a =
1

2

v2(xf)− v2
0

xf − x0

Now remember that the distance is in meters and the speeds are in km/hr.
You must convert to common units.
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One Dimensional Car Deceleration Problem (continued)

To solve part a) just put in the values which you know

a =
1

2

v2(xf)− v2
0

xf − x0

Now remember that the distance is in meters and the speeds are in km/hr.
You must convert to common units.
We choose to have the speeds expressed in m/s, so 70 km/hr = 70 · 103m/3600
sec = 19.44 m/s and 140 km/hr = 140 · 103m/3600 sec = 38.89 m/s. Then

a =
1

2

(19.44)2 − (38.89)2

200− 0
= −2.84 m/s2

Note that there is a negative sign to this acceleration value, and this is as it
should be for deceleration.

To solve part b) use the same kinematic equation as for part a) only this time
you know the value of the acceleration a:

v2(xf) = v2
0 + 2a(xf − x0)

Here vf = 35 km/hr, v0 = 70 km/hr, and (xf − x0) is the unknown

xf − x0 =
v2(xf)− v2

0

2a

As before you must convert the speeds into m/s. So 70 km/hr = 19.44 m/s and
35 km/hr = 9.72 m/s:

xf − x0 =
(9.72)2 − (19.44)2

2 · (−2.836)
= 50.0 m
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One Dimensional Car Deceleration Problem (concluded)

A sports car is traveling along a straight road at 140 km/hr. When the brakes
are applied, it undergoes a uniform negative acceleration (deceleration) which
slows it down to 70 km/hr in a distance of 200 m. a) What is the acceleration of
the sports car? b) If it continues to accelerate at this rate how far will it travel
while its speed decreases from 70 to 35 km/hr? c) How far does it travel as its
speed changes from 140 km/hr to 0?

To solve part c) use the same kinematic equation as for part a). In this case xf

is unknown, x0 = 0, and vf = 0 m/s. The initial speed v0 = 140 km/hr works
out to be 38.89 m/s from before

xf − x0 =
v2(xf)− v2

0

2a

xf =
−v2

0

2a
=

−(38.89)2

2 · (−2.836)
= 266 m

Extra question How would you determine how much time it takes for the
sports car to come to a complete stop from its 140 km/hr initial speed?
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CHAPTER 3: Motion in Two Dimensions: Projectile Motion

This chapter considers motion of a particle in two dimensions. The two dimen-
sions are specified as X and Y positions as a function of time.
The crucial thing to remember is that the X and Y motions are completely
independent.
The kinematic equations of motion which you learned last time will be straight-
forwardly applied to the separate X and Y motions.

The definitions of displacement, velocity, and acceleration which you
learned in one dimension are straightforwardly extended to two dimensions.
Displacement in two dimensions

∆~r ≡ ~rf − ~ri = (xf − xi) ı̂ + (yf − yi) ĵ

Velocity in two dimensions
average velocity :

vif ≡
∆r

∆t
=

rf − ri

tf − ti
=

(xf − xi)

tf − ti
ı̂ +

(yf − yi)

tf − ti
ĵ

instantaneous velocity:

v(t) ≡ lim
∆t→0

∆r

∆t
= lim

tf→ti

(xf − xi)

tf − ti
ı̂ +

(yf − yi)

tf − ti
ĵ = vx(t) ı̂ + vy(t) ĵ

Acceleration in two dimensions
average acceleration :

aif ≡
∆v

∆t
=

vf − ri

tf − ti
=

(vxf − vxi)

tf − ti
ı̂ +

(vyf − vyi)

tf − ti
ĵ

instantaneous acceleration :

a(t) ≡ lim
∆t→0

∆v

∆t
= lim

tf→ti

(vxf − vxi)

tf − ti
ı̂ +

(vyf − vyi)

tf − ti
ĵ = ax(t) ı̂ + ay(t) ĵ
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Going from ONE to TWO Dimensions with Kinematics

In Lectures 2 and 3, we studied the motion of a particle in just one dimension.
The concepts of velocity and acceleration were introduced. For the case of con-
stant acceleration, the kinematic equations were derived so that at any instant
of time, you could know the position, velocity, and acceleration of a particle in
terms of the initial position and the initial velocity. Now the same thing will be
done in two dimensions. It is important that you recall what you have learned
in the one dimension case.

Review of one dimension, constant acceleration kinematics
In one dimension, all you need to know is the position and velocity at a given
instant of time:

x(t) = x0 + v0xt +
1

2
axt

2

vx(t) = v0x + axt

Note that I have put a sub–script x in these above equations. For strictly one
dimensional motion, such a sub–script is superfluous. However, it is useful in
extending your knowledge of kinematics to two dimensions.

Extension of kinematics to two dimensions
In two dimensions, say X and Y , you need to know the position and velocity
of particle as a function of time in two, separate coordinates. The particle,
instead of being confined to travel only along a straight horizontal (or vertical)
line, is now allowed to move in a plane. The extension of kinematics to two
dimensions is very straightforward.

For the X coordinate: For the Y coordinate:

x(t) = x0 + v0xt +
1

2
axt

2 y(t) = y0 + v0yt +
1

2
ayt

2

vx(t) = v0x + axt vy(t) = v0y + ayt
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Worked Example of Two Dimensional Motion

A particle moves in the xy plane with an x component of acceleration ax =
4 m/s2. The particle starts from the origin at t = 0 with an initial velocity
having an x component of 20 m/s, and a y component of −15 m/s. (There is no
y component of acceleration =⇒ ay = 0.)

a) What are the x and y components of the velocity vector as a function of
time ?

b) What are the velocity and speed of the particle at t = 5 s ?

c) What are the x and y components of the position vector as a function of
time ?

a) Velocity kinematics equations:

vx(t) = v0x + axt = 20 m/s + 4 m/s2t

vy(t) = v0y + ayt = −15 m/s

v(t) ≡ vx(t) ı̂ + vy(t) ĵ = (20 m/s + 4 m/s2t) ı̂− (15 m/s) ĵ

b) Velocity and speed at t = 5 s
Substitute for t = 5 s in the above equations for v(t)

v(t = 5) = (20 + 4(5)) ı̂− 15 ĵ = 40 m/s ı̂− 15 m/s ĵ

The speed is obtained by using, again, the Pythagorean theorem

v =
√

v2
x + v2

y =
√

(40)2 + (−15)2 = 42.7 m/s

Θv = tan−1 vy

vx
=
−15

40
= −20.6o
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Worked Example of Two Dimensional Motion (concluded)

A particle moves in the xy plane with an x component of acceleration ax =
4 m/s2. The particle starts from the origin at t = 0 with an initial velocity
having an x component of 20 m/s, and a y component of −15 m/s. (There is no
y component of acceleration =⇒ ay = 0.)

a) What are the x and y components of the velocity vector as a function of
time ?

b) What are the velocity and speed of the particle at t = 5 s ?

c) What are the x and y components of the position vector as a function of
time ?

c) The separate position functions x(t) and y(t), given that at t = 0 the values
are x0 = 0 and y0 = 0:

x(t) = x0 + v0xt +
1

2
axt

2 =⇒ x(t) = 20( m/s)t + 2( m/s2)t2

y(t) = y0 + v0xt +
1

2
ayt

2 =⇒ y(t) = −15( m/s)t

The general position vector r(t) is then given by

r(t) = x(t) ı̂ + y(t) ĵ = (20( m/s)t + 2( m/s2)t2) ı̂ + (−15( m/s)t) ĵ

We can determine the velocity vector ~v(t) by taking the time derivative of the
position vector:

v(t) =
dr(t)

dt
= (20 + 4t) ı̂− 15 ĵ
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Special Case of PROJECTILE Motion

There is a special, very important case of two dimensional motion with con-
stant acceleration. This is the case of projectile motion for which the vertical
motion is governed by gravity, and there is no acceleration in the horizontal
direction. So what can one say about the velocity in the horizontal direction?

Projectile Motion, no horizontal acceleration, ax = 0

vx(t) = v0x + axt =⇒ vx(t) = v0x

x(t) = x0 + v0xt +
1

2
axt

2 =⇒ x(t) = x0 + v0xt

general kinematic equations =⇒ specific projectile motion equations

In projectile motion, the horizontal velocity is constant and remains equal to the
initial velocity. It is most important that you realize and remember that fact.
By consequence, the distance traveled horizontally increases linearly with the
duration of the time traveled.

Projectile Motion, vertical acceleration =ay = −g

vy(t) = v0y − gt

y(t) = y0 + v0yt−
1

2
gt2

Initial Angle of Elevation for a Projectile
A projectile will typically have a positive initial horizontal component of velocity
v0x and usually a positive initial vertical component of velocity v0y. These two
components of the initial velocity determine the initial angle of elevation α0

above the horizontal direction for the projectile

α0 ≡ tan−1 v0y

v0x

Equivalently, if one is given the initial speed v0 (magnitude of the initial velocity)
and the direction angle α0 of the initial velocity vector with respect to the
horizontal, then the horizontal and the vertical components are determined by

v0x = v0 cos α0 and v0y = v0 sin α0 3.19
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Special Case of PROJECTILE Motion: Common time parameter

In the projectile equations we have written separately the x position as a function
of time, x(t), and the y position as a function of time, y(t). Now in each equation
it is the same time that we are using. It is exactly the same tick on the clock or
number on the digital watch that is being used. So, we may solved for the time
variable from the x(t) equation, and substitute that in the y(t) equation.

x(t) = x0 + v0xt =⇒ t =
x

v0x

Now substitute this in the y(t) equation.

y(t) = y0 + v0yt−
1

2
gt2 = y0 + v0y(

x

v0x
)− 1

2
g(

x

v0x
)2

y(x) = y0 +
v0y

v0x
x− 1

2

g

v2
x0

x2

The Trajectory Equation
The position Y as a function of the position X is given a special name:
the trajectory equation

y(x) = y0 +
v0y

v0x
x− 1

2

g

v2
x0

x2

The motion of a projectile, in terms of the x and the y positions is a parabola.
Notice, that on the left side, we have switched from writing y(t) to y(x) because
on the right hand side we have eliminated the time coordinate t. If the initial
position y0 is taken to be 0, and then we recall that the ratio v0y = v0 sin α0 and
v0x = v0 cos α0, then we can re-write the trajectory equation

y(x) = (tan α0)x−
g

2v2
0 cos2 α0

x2 3.27

The Range of a Projectile
The Range of a projectile is the horizontal distance that the projectile will
travel until it returns to its initial height (ground level in usual cases). From the
Equation 3.27, it is easy to determine that the Range depends upon the initial
speed and the initial angle of elevation according to the formula:

R(v0, α0) =
v2

0 sin 2α0

g
(What angle of elevation gives the maximum range?)
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Prototype Problem for Projectile Motion
Suppose a cannon is fired at ground level with some initial velocity ~v. That is,
the cannonball exits the cannon with a speed v at some angle α0 with respect
to the horizontal axis. Describe the motion of the cannonball. Specifically

1) How high h (vertical direction) does the cannonball go ?

2) How far R horizontal direction does the cannonball go?

3) How much time t1 does it take for the cannonball to reach its maximum
height?

4) How much time does it take before falling back to the ground?

How high h does the cannonball go?
First we realize that the cannonball executes a parabolic path.
At the highest point of the trajectory we know that its vertical velocity compo-
nent is 0. So we have

vy(t1) = 0 = v0y − gt1 =⇒ t1 =
v0y

g
=

v0 sin α0

g

where we take t1 to be the time to reach the maximum height.
Note: v0y = v0 sin α0 where α0 is the initial direction of the velocity vector.
Now we can use this time t1 to substitute into the vertical position equation:

y(t1) = h = y0 + v0yt1 −
1

2
gt21

h = 0 + v0y ·
v0y

g
− 1

2
g(

v0y

g
)2 =

v2
y0

2g
=

v2
0 sin2 α0

2g

So we have answered parts 3) and 1) above, and we should be able to quickly
get the answer for part 4). What is the answer to part 4)?
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Circular Motion and Motion in a Curved Path
We have stated that acceleration is the time rate of change of vector velocity

~a = lim
∆t→0

~∆v

∆t
=

d~v

dt

Now there are two ways that one can get a non-zero value for ~∆v. The first, and
most obvious, way is to have a change in the magnitude of ~v. This is what we
normally think of as acceleration: an increase (decrease deceleration) of speed.
However, and this is not so obvious at first glance, we can also get a change
in the velocity vector even if the magnitude v does NOT change. How is this
possible. Simple. Just change the direction of the velocity vector ~v. The change
in the direction of ~v, even if the magnitude v stays constant, produces a ~∆v.

Motion in a Circle at Constant Speed
The simplest case of changing the direction of the velocity vector without chang-
ing the magnitude v is to have motion in a circle of constant radius r at a constant
speed v. According to the above discussion, we must then have an acceleration.
The magnitude of this acceleration is easily proven (page 87–89) to be:

ac =
v2

r
(3.28)

Note that we have attached a subscript c to the symbol for this acceleration.
The reason to use this subscript is to indicate the direction which in this case
is along the radius towards the center of the circle. This kind of acceleration is
called centripetal acceleration meaning center-seeking acceleration.

Acceleration Has Two Components
In two dimensional motion acceleration has two Cartesian components ~a =
ax ı̂ + ay ĵ. The term Cartesian means using a rectangular coordinate system.
However, in some cases it is more useful to think of the tangential and the radial
components of the acceleration. It is still the same acceleration, but expressed
in a different coordinate system.

~a = ~at + ~ac

The tangential component is in the direction tangent to the path. This com-
ponent of acceleration increases the magnitude of the velocity. The radial or
centripetal component of the acceleration changes the direction of the velocity
vector.
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Relative Velocity
Different Coordinate Frames
As we saw on the last page, the same vector may be decomposed into its com-
ponents in different coordinate systems. The idea of coordinate systems is an
important one which we have been using so far without too much thought. How-
ever, the subject of coordinate systems (also called reference frames) is extremely
important in Physics. In fact, it was by a study of how Physics is derived in
different reference frames that Albert Einstein came up with his famous Theory
of Relativity. For now we just show some simple examples.

Questions About Moving Reference Frames
Suppose you are in a train, and the window shades down and the track is very
smooth, quiet, and straight. Can you tell that you are moving? For that matter,
seated in the classroom, can you tell that the Earth is moving around the Sun?
Suppose the train goes around a sharp curve, again with the window shades still
shut. Can you tell whether this is happening?
Same train and on a straight track, but the window shades are up and you can
see that you are moving very fast, say 100 miles/hour. You decide to stand in
the aisle and jump straight up as high as you can. Where to you land in the
aisle? What does your motion look like to a fellow passenger? What does your
motion look like to someone looking through the window?

Velocities and Moving Reference Systems
Suppose that there is one coordinate system O′ moving at a constant velocity
~VOO′ with respect to another coordinate system O. Now a particle P is observed
to be moving in coordinate system O with velocity ~vPO. In the O′ coordinate
system an observer will see velocity ~vPO′. These three velocities are related by

~vPO′ = ~vPO − ~VOO′ 3.22

The above equation is called the Galilean Velocity Transformation. It was named
after Galileo, was was thought to be universally true up until Einstein found that
it was not correct at velocities near the speed of light. However, you can use this
velocity transformation equation quite well at normal speeds. In fact, there are
interesting relative velocity problems such as flying in a cross-wind, or a boat
crossing a river with a current which we can study. You already know how to
solve these problems qualitatively, if not quantitatively, by your own experiences.


