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REVIEW: Going from ONE to TWO Dimensions with Kinematics

In Lecture 2, we studied the motion of a particle in just one dimension. The
concepts of velocity and acceleration were introduced. For the case of constant
acceleration, the kinematic equations were derived so that at any instant of
time, you could know the position, velocity, and acceleration of a particle in
terms of the initial position and the initial velocity. Now the same thing will be
done in two dimensions. It is important that you recall what you have learned
in the one dimension case.

Review of one dimension, constant acceleration kinematics

In one dimension, all you need to know is the position and velocity at a given
instant of time:

1
x(t) = xo + vost + 5%752

V() = voz + agt

Note that I have put a sub—script = in these above equations. For strictly one
dimensional motion, such a sub—script is superfluous. However, it is useful in
extending your knowledge of kinematics to two dimensions.

Extension of kinematics to two dimensions

In two dimensions, say X and Y, you need to know the position and velocity
of particle as a function of time in two, separate coordinates. The particle,
instead of being confined to travel only along a straight horizontal (or vertical)
line, is now allowed to move in a plane. The extension of kinematics to two
dimensions is very straightforward.

For the X coordinate: For the Y coordinate:
L, L
x(t) = xo + vout + 5%75 y(t) = yo + vo,t + iayt

V() = voz + ayt vy (t) = voy + ayt
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REVIEW: Special Case of PROJECTILE Motion

There is a special, very important case of two dimensional motion with con-
stant acceleration. This is the case of projectile motion for which the vertical
motion is governed by gravity, and there is no acceleration in the horizontal
direction. So what can one say about the velocity in the horizontal direction?

Projectile Motion, no horizontal acceleration, a, = 0

V(1) = voz + at = v.(t) = voy
L
x(t) = xo + vout + 5%75 — x(t) = xo + vout

general kinematic equations == specific projectile motion equations

In projectile motion, the horizontal velocity is constant and remains equal to the
initial velocity. It is most important that you realize and remember that fact.
By consequence, the distance traveled horizontally increases linearly with the
duration of the time traveled.

Projectile Motion, vertical acceleration =a, = —g

1
vy(t) =voy —gt and  y(t) = yo + voyt — 5gtz

Initial Angle of Elevation for a Projectile
A projectile will typically have a positive initial horizontal component of velocity
vo, and usually a positive initial vertical component of velocity vg,. These two
components of the initial velocity determine the initial angle of elevation 6, above
the horizontal direction for the projectile

0y = tan~! Yoy

Vox
Equivalently, if one is given the initial speed vy (magnitude of the initial velocity)
and the direction angle theta, of the initial velocity vector with respect to the

horizontal, then the horizontal and the vertical components are determined by

Vo = vpcosty and w, =wvpsinfy  (The book uses o instead of ) 3.19
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REVIEW: Special Case of PROJECTILE Motion: Common time parameter
In the projectile equations we have written separately the x position as a function
of time, z(t), and the y position as a function of time, y(¢). Now in each equation
it is the same time that we are using. It is exactly the same tick on the clock or
number on the digital watch that is being used. So, we may solved for the time
variable from the x(¢) equation, and substitute that in the y(¢) equation. We
usually take x¢y = 0, which leads to

T
z(t) = vt =t = —

Voz
Now substitute this in the y(¢) equation.
1 x 1 =
t) = vot — —gt? = Vo (—=) — = g(——)2
y(t) = wo + vyt — 597 = o + vy () = 59( )
y(x) =yo + @x — lixQ = Yo + tanfpz — EL@'Q
Vo 202, 2 18 cos? b

where we have substituted tan 6y = v, /vo,.

The Trajectory Equation
The position Y as a function of the position X is given a special name:
the trajectory equation. If yy = 0 then we have

1 g 2

= tanfpxr — —————
yl) = tan b 2@8C08290x

The motion of a projectile, in terms of the x and the y positions is a parabola.
Notice, that on the left side, we have switched from writing y(¢) to y(z) because
on the right hand side we have eliminated the time coordinate ¢ in favor of the
position coordinate x.

The Range of a Projectile

The Range of a projectile is the horizontal distance that the projectile will
travel until it returns to its initial height (ground level in usual cases). From the
Equation 3.27, it is easy to determine that the Range depends upon the initial
speed and the initial angle of elevation according to the formula:

v3 sin 2ay

R(vo, a0) = ——

(What angle of elevation gives the maximum range?)
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Prototype Problem for Projectile Motion

Suppose a cannon is fired at ground level with some initial velocity v. That is,
the cannonball exits the cannon with a speed v at some angle # with respect to
the horizontal axis. Describe the motion of the cannonball. Specifically

1) How high h (vertical direction) does the cannonball go ?
2) How far R horizontal direction does the cannonball go?

3) How much time ¢; does it take for the cannonball to reach its maximum
height?

4) How much time does it take before falling back to the ground?

How high h does the cannonball go?

First we realize that the cannonball executes a parabolic path. At the highest
point of the trajectory we know that its vertical velocity component is 0. So we
have 0
Vo Vo S111 Oy
vy(tl):O:voy—gtl:tlzgy:g

where we take t; to be the time to reach the maximum height.
Note: vy, = vpsin 6y where 0 is the initial direction of the velocity vector.
Now we can use this time t; to substitute into the vertical position equation:

1
y(t1) = h = yo + voyt1 — —gt%

2
2 2 i
voy 1 o v vg sin? O,
h:0+v0y.y_2g(gy)2:2i’:029

So we have answered parts 3) and 1) above, and we should be able to quickly
get the answer for part 4). What is the answer to part 4)?
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Projectile Equations: Initial Position at Origin

The trajectory equation was previously shown to be:

U()y 1 g o
yr)=y+ —r— 57T
() Vox 23y

In terms of the cannonball problem, where we specify v and #, instead of vy, and
vy, and have xy = 0 = gy this is easily transformed to be:

y(x) = (tanby)x — <g)x2 (3.27)

208 cos? O

The text book uses o instead of 6 to represent the initial angle of the projectile.

Horizontal Range

A distance of interest is the Horizontal Range which the text symbolizes with
the letter R. The horizontal range is the = distance which the projectile travels
before returning to the ground level. The solution for R can be obtained by
solving trajectory equation for y(R) = 0:

)

One solution is R = 0 (why?), and the other solution is given by

 vgsin 26
g
Note that the maximum value of the Range occurs at 6y = 45°, and is given by:
02
Rypaa(fo = 45°) = go

You should also convince yourself that different values 6y which are symmetric
about 6y = 45° will give the same value for the Range.
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Worked Example: “Shoot—the—Monkey” demonstration

The hypothetical premise of this ecologically-incorrect example is that a hunter
spies a monkey hanging from a tree branch. The hunter knows that when he
fires his rifle, the monkey will drop instantaneously from the tree. Where should
the hunter aim his rifle: 1) above the monkey, 2) at the monkey, or 3) below the
monkey?

How do you quantify the fact that an “intercept” has occurred, in other words
the projectile fired from the gun hits the dropping target ?

An intercept will occur if at the same time the projectile and the target are at
exactly the same coordinates (z,¥)

1) Since the target is just dropping, its horizontal position remains the same at
all time: x = zp

2) Now calculate how long it takes the projectile to reach the © = zp

x(t) = vozt = (v cosby)t

. xrr
= t(intercept) =t; = ————
vy cos

3) Now calculate the vertical position yp where the projectile is at ¢t = ¢

. xr 1 TT  \2
tr) = votr — —gt? = (v sin ) (———) — —g(———
yp(tr) Oy“I 29 7= (vo 0)(1}0 cos@o) 29 Vg cos b

1 XT 2
tr) =xptanfy — — ()
yr(tr) g 0799 Vg cos Oy
4) For the dropping target, its initial height yy = x7 tan 6y, its initial velocity is
0, and so its position at ¢t = t; is given by:

tr)=yo— ~gt* = vrtanfy — ~g(——
yr(tr) = yo — 59t° = wr tanby 29(%60890)

So both the target and the projectile meet at the same (x,y) coordinates simul-
taneously. Notice that this result is independent of .
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Circular Motion and Motion in a Curved Path
We have stated that acceleration is the time rate of change of vector velocity

) Av  dv
im — = —
At—0 At dt
Now there are two ways that one can get a non-zero value for Av. The first, and

most obvious, way is to have a change in the magnitude of ¢. This is what we
normally think of as acceleration: an increase (decrease deceleration) of speed.

a=

However, and this is not so obvious at first glance, we can also get a change
in the velocity vector even if the magnitude v does NOT change. How is this
possible. Simple. Just change the direction of the velocity vector ¥. The change
in the direction of ¥, even if the magnitude v stays constant, produces a Av.

Motion in a Circle at Constant Speed
The simplest case of changing the direction of the velocity vector without chang-
ing the magnitude v is to have motion in a circle of constant radius r at a constant
speed v. According to the above discussion, we must then have an acceleration.
The magnitude of this acceleration is easily proven (page 87-89) to be:

02

«=— (The book “radial” 3.28
ac= - (The book uses “radial” a,q) (3.28)

Note that we have attached a subscript ¢ to the symbol for this acceleration.
The reason to use this subscript is to indicate the direction which in this case
is along the radius towards the center of the circle. This kind of acceleration is
called centripetal(or radial) acceleration meaning center-seeking acceleration.

Acceleration Has Two Components

In two dimensional motion acceleration has two Cartesian components @ =
a1+ ayj. The term Cartesian means using a rectangular coordinate system.
However, in some cases it is more useful to think of the tangential and the radial
components of the acceleration. It is still the same acceleration, but expressed
in a different coordinate system.

a = da; + d
The tangential component is in the direction tangent to the path. This com-
ponent of acceleration increases the magnitude of the velocity. The radial or

centripetal component of the acceleration changes the direction of the velocity
vector.
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Relative Velocity

Different Coordinate Frames

As we saw on the last page, the same vector may be decomposed into its com-
ponents in different coordinate systems. The idea of coordinate systems is an
important one which we have been using so far without too much thought. How-
ever, the subject of coordinate systems (also called reference frames) is extremely
important in Physics. In fact, it was by a study of how Physics is derived in
different reference frames that Albert Einstein came up with his famous Theory
of Relativity.

Questions About Moving Reference Frames

Suppose you are in a train, and the window shades down and the track is very
smooth, quiet, and straight. Can you tell that you are moving? For that matter,
seated in the classroom, can you tell that the Earth is moving around the Sun?
Suppose the train goes around a sharp curve, again with the window shades still
shut. Can you tell whether this is happening?

Same train and on a straight track, but the window shades are up and you can
see that you are moving very fast, say 100 miles/hour. You decide to stand in
the aisle and jump straight up as high as you can. Where to you land in the
aisle? What does your motion look like to a fellow passenger? What does your
motion look like to someone looking through the window?

Velocities and Moving Reference Systems

Suppose that there is one coordinate system O’ moving at a constant velocity
VOO/ with respect to another coordinate system O. Now a particle P is observed
to be moving in coordinate system O with velocity vpo. In the O’ coordinate
system an observer will see velocity vpor. These three velocities are related by

Upor = Upo — Voo 3.36

The above equation is called the Galilean Velocity Transformation. It was named
after Galileo, was was thought to be universally true up until Einstein found that
it was not correct at velocities near the speed of light. However, you can use this
velocity transformation equation quite well at normal speeds. In fact, there are
interesting relative velocity problems such as flying in a cross-wind, or a boat
crossing a river with a current which we can study. You already know how to
solve these problems qualitatively, if not quantitatively, by your own experiences.
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Worked Example of Centripetal Acceleration

Problem Statement A satellite is in circular orbit at 150 kilometers height (h)
above the Earth’s surface, where the Earth has a radius Rg of 6380 kilometers.
The satellite orbits the Earth once every 90 minutes. What is the magnitude of
the centripetal acceleration experienced by the satellite?

Solution In order to calculate centripetal acceleration a. = v?/r, we need to
know the speed v and the radius of the orbit which in this case isr = R+ h =
6530 kilometers. The speed is the circumference of the orbit (= 27r) divided by
the time of the orbit which is 90 x 60 = 5400 seconds. Hence the speed is

2mr 2 % 3.14159 x 6.530 x 10°

— = 7600
YT 5400 m/s
Therefore the centripetal acceleration is
2 7600)2
a. = = ( ) —=8.8m/s’

r 6.530 x 106

Are you curious why this centripetal acceleration is so close to g = 9.8 m/s*?
The answer will be given partially in the next two chapters.

Worked Example of Relative Velocity
Problem Statement A boat can travel at a speed of 4 meters/second in a river.
The river itself has a current with a speed of 3 meters/second in the direction
North. If the captain of the boat points the boat in the direction East, what
will be the actual velocity of the boat with respect to the Earth’s surface?
Problem Solution It is essential that you draw velocity vectors in order to solve
such problems. You can easily visualize that the boat will be carried along in
the Northerly direction by the river’s current as well as making its way East
under its own power. With the numbers given, the total magnitude of the total
velocity is 5 meters/second. The direction is given by 6 = tan~! (3/4) = 37°,
North of East.
Now suppose that the river is 200 meters wide West to East. How far downstream
from its initial position on the West bank will the boat arrive on the East bank?
What quantity do you need to calculate first in order to solve this problem?
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Chapter 4: Newton’s Three Laws of Motion

First Law: The Law of Inertia

An object at rest will remain at rest unless and until acted upon by an external
force.

An object moving at constant velocity will continue to move at constant velocity
unless and until acted upon by an external force.

These two statements are the same when one considers that whether or not an
object has velocity depends upon one’s frame of reference.

Second Law: Relation between Force and Acceleration

An object will experience an acceleration a in direct proportion to the force F
exerted on the object. The constant of the proportionality is the object’s mass
m.

F =ma (4.7)
If there is no force then there must be no acceleration. If there is no acceleration
then there must be no force. If there is force then there must be acceleration. If
there is acceleration then there must be a force.

Third Law: Action and Reaction Forces

Fvery (action) force which exists has an equal an opposite (reaction) force, but
the action-reaction forces NEVER act on the same body.

A force Fap is exerted on body A by body B. By Newton’s Third Law there
must also be a force Fga which is exerted on body B by body A.
Fag = —Fga (4.11)

“It takes two to tango” could be just another way of stating Newton’s Third
Law. In other words, all forces are the result of two bodies (particles) acting on
one another.
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Insight into Newton’s First Law of Motion
First Law: The Law of Inertia

An object at rest will remain at rest unless and until acted upon by an external
force.

An object moving at constant velocity will continue to move at constant velocity
unless and until acted upon by an external force.

This may be the most difficult law of all to grasp. In fact, for at least 2,000
years, until the time of Galileo and Newton, the law was simply not recognized
by humankind.

The View of Aristotle

The view which pervaded human thought until the 1600s was that objects were
“naturally” at rest on the surface of the Earth. In order to keep an object
moving, some force was necessary, although the word “force” would not have
been used. Once the force was taken away, then the object would slow down
and return to its “natural” state of rest.

Of course, there were certain objects such as the Sun, the Moon, the stars and
the planets, which appeared to be in a perpetual state of motion, unaided by
external force. Since this motion was not “natural”, then the objects had to be
“supernatural” or gods.

The View of Newton (Galileo and others of the time)

The present scientific view of motion is called Newtonian Mechanics, after Sir
Issac Newton. It was Newton who discerned the connection between motion and
force, and he was able to dispel the notion of a “natural” state of rest. His First
Law was truly a revolution, and we can best appreciate it through the air track
demonstration shown in class.
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Astronomy and Newton’s First Law of Motion

We conclude the study of Newton’s First Law by returning to the observations
of the seemingly perpetual motion of astronomical objects such as the Sun, the
Moon, and the planets.

Here again is the First Law:

An object at rest will remain at rest unless and until acted upon by an external
force.

An object moving at constant velocity will continue to move at constant velocity
unless and until acted upon by an external force.

Now we ask these questions relative to the First Law:
1) Is the motion of the planets consistent with the First Law?

2) Specifically, are all of these objects moving with constant velocity, and how
does one define constant velocity?

3) If a given astronomical object such as the Moon is not moving with constant
velocity, what inference can we derive from the First Law

With the answer to this last question, we (as was Newton) are drawn into the
discussion of the Second Law.
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CHAPTER 4: Newton’s Second Law of Motion
The fundamental equation of mechanics is Newton’s Second Law of Motion:

F =ma (4.7)

A FORCE acting on an object with mass m will produce an acceleration a. Note
that this is a vector equation, so it actually represents three separate equations
for the X, Y, and Z components of the force and the acceleration.

More than one force acting on an object
If there is more than one force acting on an object, the left hand side of the
Newton’s second law is simply replaced by the vector sum of the forces acting
on the body:

>N F; =ma (4.8a)

— L\ F, =ma, X F, =ma, I F =ma, (4.8b)

It is very important that you realize that this equation applies to the forces
acting on the object. The most difficult thing for most students is to recognize
all, and only all, the forces which act on a particular object. Sometimes students
will leave out certain forces, and other times students will include forces which
are not acting on the object in question. The secret is to focus your attention
on the object in question.

ACCELERATED MOTION

Accelerated motion occurs when the left hand side of Eq. 4.7 is not zero. Then
the object must have an acceleration. Many of the problems you will have to
work out will involved computing the acceleration of an object when the object
experiences certain forces. Typical cases will include the force of gravity (weight),
the normal forces exerted by supporting walls and floors, and the static or kinetic
frictional forces.
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Worked Example: Newton’s Second Law of Motion

A hockey puck with a mass of 0.3 kg slides on the horizontal frictionless surface
of an ice rink. Two forces act on the puck. The force F; has a magnitude of 5
N and acts at an angle of —20°, and the force F5 has a magnitude of 8 N and
acts at an angle of +60°with respect to the z axis. Determine the acceleration
of the puck.
Solution
This is a straightforward application of Newton’s second law

F

F=ma =—a=— (4.7)

m
We have to compute the net or resultant force acting on the mass of the puck.
The acceleration vector a will be in the same direction as F, and with a magni-
tude equal to the magnitude F' divided by m.

Force | Magnitude Angle X Comp. | Y Comp.
(N) (deg) (N) (N)
F, 5.0 —20.0 +4.70 —-1.71
Fo 8.0 +60.0 +4.00 +6.93
Fret | Fre = Onet = +8.70 5.22

So, by the usual methods of analytic vector addition, we find

Fret = 1/(8.70)2 + (5.22)2 = 10.15 N

F, 5.22
Opet = tan ' =2 =tan~! = = 31.0°
TR T 80
Now to compute the acceleration
F.. 10.15 9
= = = 33.8
m 0.3 m/s

The direction of a is exactly the same as that of Fpei: 02 = 31.0°.



