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REVIEW: (Chapter 4) Newton’s Three Laws of Motion

First Law: The Law of Inertia

An object at rest will remain at rest unless and until acted upon by an external
force.

An object moving at constant velocity will continue to move at constant velocity
unless and until acted upon by an external force.
These two statements are the same when one considers that whether or not an
object has velocity depends upon one’s frame of reference.

Second Law: Relation between Force and Acceleration

An object will experience an acceleration a in direct proportion to the force F
exerted on the object. The proportionality constant is the object’s mass m.

~F = m~a (4.7)

If there is no force then there must be no acceleration. If there is no acceleration
then there must be no force. If there is force then there must be acceleration. If
there is acceleration then there must be a force.

Third Law: Action and Reaction Forces

Every (action) force which exists has an equal an opposite (reaction) force, but
the action-reaction forces NEVER act on the same body.

A force ~FAB is exerted on body A by body B. By Newton’s Third Law there
must also be a force ~FBA which is exerted on body B by body A.

~FAB = − ~FBA (4.11)

“It takes two to tango” could be just another way of stating Newton’s Third
Law. In other words, all forces are the result of two bodies (particles) acting on
one another.
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Insight into Newton’s First Law of Motion
First Law: The Law of Inertia

An object at rest will remain at rest unless and until acted upon by an external
force.
An object moving at constant velocity will continue to move at constant velocity
unless and until acted upon by an external force.

This may be the most difficult law of all to grasp. In fact, for at least 2,000
years, until the time of Galileo and Newton, the law was simply not recognized
by humankind.

The View of Aristotle
The view which pervaded human thought until the 1600s was that objects were
“naturally” at rest on the surface of the Earth. In order to keep an object
moving, some force was necessary, although the word “force” would not have
been used. Once the force was taken away, then the object would slow down
and return to its “natural” state of rest.
Of course, there were certain objects such as the Sun, the Moon, the stars and
the planets, which appeared to be in a perpetual state of motion, unaided by
external force. Since this motion was not “natural”, then the objects had to be
“supernatural” or gods.

The View of Newton (Galileo and others of the time)
The present scientific view of motion is called Newtonian Mechanics, after Sir
Issac Newton. It was Newton who discerned the connection between motion and
force, and he was able to dispel the notion of a “natural” state of rest. His First
Law was truly a revolution, and we can best appreciate it through the air track
demonstration shown in class.
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Astronomy and Newton’s First Law of Motion

We conclude the study of Newton’s First Law by returning to the observations
of the seemingly perpetual motion of astronomical objects such as the Sun, the
Moon, and the planets.
Here again is the First Law:
An object at rest will remain at rest unless and until acted upon by an external
force.
An object moving at constant velocity will continue to move at constant velocity
unless and until acted upon by an external force.

Now we ask these questions relative to the First Law, where we assume that the
motion is described according to a coordinate system which is fixed at the center
of the Sun:

1) Is the motion of the planets consistent with the First Law?

2) Specifically, are all of these objects moving with constant velocity, and how
does one define constant velocity?

3) If a given astronomical object such as the Moon is not moving with constant
velocity, what inference can we derive from the First Law

With the answer to this last question, we (as was Newton) are drawn into the
discussion of the Second Law.



Lecture 6: Newton’s Laws and Their Applications 4

CHAPTER 4: Newton’s Second Law of Motion
The fundamental equation of mechanics is Newton’s Second Law of Motion:

F = ma (4.7)

A FORCE acting on an object with mass m will produce an acceleration a. Note
that this is a vector equation, so it actually represents three separate equations
for the X, Y , and Z components of the force and the acceleration.

More than one force acting on an object
If there is more than one force acting on an object, the left hand side of the
Newton’s second law is simply replaced by the vector sum of the forces acting
on the body:

ΣN
i=1

Fi = ma (4.8a)

=⇒ ΣN
i=1

Fix = max ΣN
i=1

Fiy = may ΣN
i=1

Fiz = maz (4.8b)

It is very important that you realize that this equation applies to the forces
acting on the object. The most difficult thing for most students is to recognize
all, and only all, the forces which act on a particular object. Sometimes students
will leave out certain forces, and other times students will include forces which
are not acting on the object in question. The secret is to focus your attention
on the object in question.

ACCELERATED MOTION
Accelerated motion occurs when the left hand side of Eq. 4.7 is not zero. Then
the object must have an acceleration. Many of the problems you will have to
work out will involved computing the acceleration of an object when the object
experiences certain forces. Typical cases will include the force of gravity (weight),
the normal forces exerted by supporting walls and floors, and the static or kinetic
frictional forces.
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Applications of Newton’s Laws of Motion
While the three Newton’s Laws of Motion look extremely simple at first sight
(and really are deep down) , there are a wide variety of problems to which they
can be applied. At first glance, the solutions to those problems may seem difficult
for you. However, with practice in getting to think about how to analyze these
problems, their solutions should come easier to you.
There are two types of problems

1) Static Equilibrium where there are one or more objects subjected to
forces but no object has an acceleration, and

2) Accelerated Motion where there are one or more objects subjected to
forces, and there is an acceleration.

Both of these problems are dealt with in Chapter 4 and Chapter 5.

Static Equilibrium
This is the case of Newton’s second law where there is no net force on an object.
Typically the object is at rest in the Earth’s frame of reference.

ΣFi = 0

=⇒ ΣFix = 0 and ΣFiy = 0

=⇒ the sum of the Forces acting Right = the sum of the Forces acting Left
=⇒ the sum of the Forces acting Up = the sum of the forces acting Down
In static equilibrium problems an object will have a specified mass m. In turn,
any object with a mass m at the Earth’s surface will have a weight force w = mg,
pointing downward. If the mass m is on some horizontal surface, and it has no
vertical acceleration, then there must be a counter-acting force acting against
the weight force. This force, acting perpendicular to the surface and on the
object, is called the Normal Force of the surface, with the symbol N .

Steps in Solving Statics Problems using The “Free Body” Approach
Generally you will be confronted with one or more objects on which are exerted
certain forces. Usually there will be the weight forces, and the objects will exert
forces on one another. You will be asked to solve for one or more unknown forces.
You should then follow a procedure call the Free Body Approach, explained
on the next page.
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The Free Body Approach to STATIC (EQUILIBRIUM) Mechanics Problems

1) Isolate the object(s) of interest.

2) Identify and draw all the forces acting on the object(s). This is called a
free body diagram.

3) If there is more than one object, make sure you understand which forces
are acting on which objects.

4) For each object, resolve the forces into their rectangular components.

5) Apply the Newton’s Second Law equations

ΣFix = 0

and
ΣFiy = 0

to the separate object(s).

6) Solve for the unknown force(s).

The Free Body Approach to NON-EQUILIBRIUM Mechanics Problems

A non-equilibrium problem has accelerated motion. One can also do a free-body
approach. The only difference is in step 5) above. For the mass m of each free
body, we will have Newton’s Second Law as

ΣFix = max

and
ΣFiy = may
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Worked Example in STATIC EQUILIBRIUM
A traffic light weighing 100 N hangs from a cable which in turn is tied to two
other cables fastened to an overhead support. The upper two cables make angles
of 37o and 53o with the horizontal. Find the tensions in the three cables.

This is a static equilibrium problem because there are no accelerations. All the
objects are at rest.
We focus in on a single object, the common point (octagon in the diagram)
where all three cables are connected.
We next draw an (x, y) coordinate system whose origin is at that common point.
Then, we have to decide what are the directions (angles) which the three tension
forces make in that coordinate system, according to our diagram.
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Worked Example in STATIC EQUILIBRIUM
A traffic light weighing 100 N hangs from a cable which in turn is tied to two
other cables fastened to an overhead support. The upper two cables make angles
of 37o and 53o with the horizontal. Find the tensions in the three cables.
Solution
First construct the diagram of the physical set–up, and then isolate the objects
of interest. First there is the traffic light, and second there is the knot where
the three cables are connected. (These are knotty problems; there will often be
a knot which is at rest while subject to three or more tensions.)
From the free-body diagram we immediately deduce the magnitude of T3 = 100
N. Then we can proceed to the free body diagram of the knot. We know that
the vector sum T1 + T2 + T3 = 0, so we can write down the usual table for the
analytic addition of vectors:

Force Magnitude Angle X Comp. Y Comp.
(N) (deg.) (N) (N)

T1 T1 143 T1 cos 143o T1 sin 143o

T2 T2 53 T2 cos 53o T2 sin 53o

T3 100 270 0.00 −100.0

ΣFx = 0 =⇒ T1 cos 143o + T2 cos 53o = 0

ΣFy = 0 =⇒ T1 sin 143o + T2 sin 53o − 100 = 0

We have two equations in two unknowns (T1 and T2). From the first:

T2 = T1

(− cos 143o

cos 53o

)

= 1.33T1

Substitute this in the second equation to obtain

T1 sin 143o + 1.33T1 sin 53o − 100 = 0

=⇒ T1 = 60.2 N, and T2 = 79.9 N

The above solution is checked in a spreadsheet file on the class web site.
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Accelerated Motion F = ma
A extremely common example of the accelerated motion type is a force acting
on an inclined plane. A sled of mass m is placed on a frictionless hill (inclined
plane) which is at an angle Θ with the horizontal. Find the acceleration of the
mass down the hill.
The forces acting on the block are:

1) The downward weight force W = mg exerted by gravity.

2) The normal force N exerted by the inclined plane, and perpendicular (“nor-
mal”) to its surface. You don’t know the magnitude of the normal force
initially, only its direction.

In this example, and in all inclined plane problems, it is convenient to have the
y axis perpendicular to the plane, and the x axis parallel to the plane. (Why is
that convenient ?). In that coordinate system the net component of the force in
the y direction is 0. How can you be sure of that? The two separate equations
in 4.7 become:

ΣFxi = mg sin θ = max

ΣFyi = N − mg cos θ = 0

There are two unknowns in these two equations: ax, and N , and each of these
unknowns can be solved for immediately. From the first equation

ax = g sin θ

The acceleration down the plane is independent of the size of the mass m. All
objects slide down frictionless inclined planes at the same acceleration which
depends only on the size of the plane’s inclination angle.
From the second equation you can obtain the magnitude of the normal force

N = mg cos θ
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Newton’s Second Law F = ma and Connected Objects

An object of mass M is on a frictionless horizontal table. This object is connected
by a massless string going over a pulley onto a second object m which is falling
because of gravity ? What is the acceleration of M , and what are the net forces
acting on each of M and m.

It is necessary to draw a separate free body diagram for each mass. Then add
up all the forces acting on each mass separately, and use Newton’s second law
in each case. For mass M the only unbalanced force acting is the tension T in
the connecting string. So by Newton’s second law for M becomes

FM = T = Ma

For mass m there are two forces acting: the upward tension T and the downward
weight force mg. So the Newton’s second law equation for m becomes

Fm = mg − T = ma

Notice that the magnitude of the acceleration, on the right hand side of each
equation, is the same in both cases. This is because the masses are connected
by an inextensible string. There are two unknowns in these two equations: the
magnitudes T and a. Since there are two equations, then it is possible to solve
for these two unknowns. The simplest approach is just to add the two equations
in order to eliminate the T unknown. You should obtain after adding

mg = Ma + ma =⇒ a =
m

M + m
g

=⇒ T = Ma =
Mm

M + m
g
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Newton’s Second Law and Static Friction

Static friction is a Force parallel to the surface of contact between two objects,
which acts on an object to prevent motion from occurring. Because static fric-
tion prevents the motion from occurring, the object remains stationary. The
magnitude of the static friction will then be equal to the magnitude of the ex-
ternal force trying to making the motion occur (what about the direction of the
static friction ?). So as the external force is increasing, the static friction force
must also increase. But this cannot continue indefinitely. There is a maximum
value that the static friction can have for a given object on a given surface. That
maximum is given by the equation

fmax
s = µs · N

where µs is the coefficient of static friction, and N is the normal force of the
surface against the object.

Use of the Normal Force instead of the Weight Force
Why can’t we just simply say that N is equal to the weight of the object ?
It could be that the Normal Force is less than the Weight Force, N < W , if there
is another force supporting part of the object and N > W is there is another
force pressing down on the object. Also the normal force may even be horizontal
instead of vertical, or at any angle 0 ≤ θ ≤ 90o. (Example of a block on a
blackboard !)
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Static Friction
Case 1 A force F1 pushes horizontally against an object of mass M on a rough,
horizontal surface. The object remains stationary. What is the maximum force
of static friction ? Below is the free-body diagram up until the point at which
fs = fmax

s = µsN . Until that point fs = F1 and fs < fmax
s .

fmax
s = µs · N N = Mg =⇒ fmax

s = µsMg

Case 2 A force F1 pulls at an angle Θ against a stationary object of mass M

which is on a rough, horizontal surface. What is the maximum force F1 which
can be applied?

fmax
s = µs · N N 6= Mg

The normal force of the surface, in this case, is not equal to the total weight
vector. The reason is that part of the weight of the object is supported by the
upward component of the applied force F1.

Vertical Force Equality: N + F1 sin Θ = Mg =⇒ N = Mg − F1 sin Θ

Horizontal Force Equality: fmax
s = F1 cos Θ

Substitute for fmax
s =⇒ µsN = µs(Mg−F1 sin Θ) = F1 cos Θ =⇒ F1 =

µsMg

cos Θ + sin Θ
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Newton’s Second Law and Kinetic Friction

F =
N
∑

i=1

Fi = ma

Kinetic Friction

Kinetic Friction is the Force of friction which “takes over” once the object starts
moving. The force of kinetic friction is given by a similar equation

fk = µk · N

Here we see that the kinetic friction force is always the same for a given normal
force. No matter how fast the object is moving, and no matter whether it is
accelerating or just moving at constant velocity, we still have the same force of
kinetic friction opposing the direction of the motion. Since motion is actually
occurring, this must mean that there is another force at least as big as, or bigger
than, the force of friction.

Figure 1: A 3 kg block starting from rest slides down a rough inclined plane with θ = 30o,
covering a distance of 2 meters along the plane in 1.5 seconds.
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Worked Problem with KINETIC FRICTION
A 3 kg block starts from rest at the top of a 30o inclined plane slides down a
distance of 2 m down the incline in 1.5 seconds. Find a) the acceleration of the
block, b) the speed of the block after it has slid 2 m , c) the frictional force
acting on the block, and d) the coefficient of kinetic friction between the block
and the plane.
First draw the figure and indicate all the forces acting on the block. The solution
to parts a) and b) can be found immediately using the kinematics equations

x(t) = x0 + v0xt +
1

2
axt

2 and vx(t) = v0x + axt

As usual in inclined plane problems, the x axis is down the plane, and the y axis
is perpendicular to the plane. In this case x0 = 0, v0x = 0, and we are given
that the block has moved 2 m after t = 1.5 seconds

x(t = 1.5) = 2 =
1

2
ax(1.5)

2 =⇒ ax =
4

2.25
= 1.78 m/s2

vx(t = 1.5) = v0x + ax(1.5) = 2.67 m/s

For part c) apply Newton’s second law of motion in the x direction

x direction: Fx = Mg sin θ − fk = Max (the same ax as before)

=⇒ fk = Mg sin θ − Max = 3 · 9.8 sin 30o − 3 · 1.78 = 9.37 N

For part d), to obtain the kinetic coefficient of friction, apply Newton’s second
law in the y direction where there is no acceleration and therefore no net force:

y direction: Fy = N − Mg cos θ = 0 (because ay = 0)

Substitute for the kinetic friction force fk = µkN = µkMg cos θ which gives

µk =
fk

Mg cos θ
=

9.37

3 · 9.8 cos 30o = 0.365


