
Lecture 8: Circular Motion, Work and Kinetic Energy 1

REVIEW: Centripetal Force and Circular Motion
Standard scientific literacy question: A object is attached to a string and the
object is traveling in a horizontal circle. The string breaks. What happens to
the object ? Does it go in a curved horizontal path from the point at which it
broke free ?
Answer: — absolutely not. If the object breaks free, its horizontal path is a
straight line. The only way for the object to go in a curved or circular path in
the horizontal plane is to have a force acting perpendicular to its velocity in the
horizontal plane.
The force which makes an object go in a circle is called the centripetal force.
Centripetal force is required to produce centripetal acceleration. You cannot
have one without the other. If you see circular motion you can be sure that
there is a centripetal force being produced somewhere, somehow.

Fr = mar =
mv2

r
or Fc = mac =

mv2

r

The subscripts c for centripetal or r for radial can be used interchangeably.

Centripetal Force Worked Example
A 1500 kg car is moving on a horizontal road which has a curve (part of a circle)
with a radius of curvature of 35 m. The coefficient of static friction between the
tires and the road is 0.50. What is the maximum speed at which the car can
make this curve?
It is important that you realize that there must be a centripetal force exerted
on the car (actually on the tires) by the road’s surface in this case. It is this
force which changes the direction of the car’s velocity vector. Now the maximum
static friction force is given by

fmax
s = µsN = µsMg =

Mv2
max

R

=⇒ vmax =
√

µsgR =
√

0.5 · 9.8 · 35 = 13.1 m/s (independent of mass!)

Do you understand why static friction is being used, and not kinetic friction?
Answer: Believe or not, the contact point of the tire on the road surface is
instantaneously at rest if the car is not skidding. We learn about that when we
discuss rotational motion.
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Chapter 5: Centripetal Force and Improved Highway Engineering

In the previous example, the centripetal force which enabled the car to make the
curve came just from the force of static friction. If the force of static friction is
reduced, because of wet or icy roads, then the maximum safe speed for making
the turn may be drastically reduced.
In order to rely less on friction, highway engineers came up with the idea of
banking the curves. The road surface, on a curve, becomes effectively an inclined
plane. The normal reaction force of the road surface is no longer purely vertical,
but it acquires a horizontal component. That horizontal component functions
as the centripetal force which allows the car to turn in a circle.

In banked curves, it is possible for friction to be completely absent and still
the car can make the turn. The centripetal force is given by the horizontal
component of the normal force

Fcentripetal = N sin θ =
Mv2

R
and N cos θ = Mg

Fcentripetal =
Mg

cos θ
sin θ =

Mv2

R
=⇒ v =

√

Rg tan θ (independent of M!)

Note again that the maximum speed here is independent of the mass of the car
and depends just on the radius R, the banking angle θ, and the gravitational
acceleration constant g

For home study: suppose in addition to a banked angle, there was a coefficient
of static friction µs. How would you solve for the maximum speed in that case ?
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Chapter 5: Worked Example using CENTRIPETAL FORCE
Another example of centripetal motion is the conical pendulum

An object of mass m is suspended vertically from a string, and the object moves
at constant speed v in a horizontal circle of radius R. The string makes an angle
θ with respect to the vertical direction. What is the speed of m (in terms of θ,
g, and R) ?
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Chapter 5: Worked Example using CENTRIPETAL FORCE
Another example of centripetal motion is the conical pendulum

An object of mass m is suspended vertically from a string, and the object moves
at constant speed v in a horizontal circle of radius R. The string makes an angle
θ with respect to the vertical direction. What is the speed of m (in terms of θ,
g, and R) ?

Solution: The key in circular motion problems is to find the force component
which is acting centripetally. This force component must be directed at the
center of the circle and perpendicular to the instantaneous velocity vector of the
object. In this case there are two forces: 1) the weight vector acting vertically
down, and 2) the tension vector of the string acting at some angle θ with respect
to the horizontal. Next, analyze the acceleration of the object. In which direc-
tion(s) x (horizontal) or y (vertical) does the particle have an acceleration ? If
the acceleration is 0, then the net force acting in that direction must also be 0.
For the conical pendulum, the object has no acceleration in the vertical direction.
Therefore, the net force in the y direction is 0:

Fy = 0 = Ty − W = T cos θ − Mg =⇒ T cos θ = Mg

In the horizontal (x) direction, there is an acceleration ! This is the centripetal
acceleration because the horizontal velocity is changing continuously. Therefore,
there is a net force in the horizontal direction

Fx = Tx = Max =⇒ T sin θ =
Mv2

R

Take these two equations and divide the second by the first:

T sin θ

T cos θ
=

Mv2

RMg

tan θ =
v2

Rg
=⇒ v =

√

Rg tan θ (independent of M!)

Notice that the conical pendulum result is the same as the banked highway
result. The only difference in the two problems is that a normal force N is
changed into a tension force T . The free-body diagrams are otherwise identical.
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Chapter 5: Centripetal FORCE in a VERTICAL Circle
So far all these examples of centripetal force have been for motion in a horizontal
circle. The last example for this chapter will be for motion in a vertical circle.
A motorcycle stuntman (Allo “Dare Devil” Diavolo was the first to do this trick
in 1901) rides a motorcycle around a “loop-the-loop” track. What speed must
he have had at the top of the loop (where he is upside-down) in order not to fall
off the loop, where the loop has a radius R? (Friction is not a factor.)

Since he is moving in a circle, he must have a centripetal force. At the top
of the loop, that force is pointing straight down. The question you must ask
yourself is where is that force coming from. The answer depends on how fast he
is moving. In general, if his speed at the top of the loop is v, then there must
be a centripetal force Fc given by:

Fc =
Mv2

R
Now, as to where this force is coming from, the easiest answer is gravity. There
will always be a gravitational or weight force w = Mg.
Suppose that the weight force is bigger than the centripetal force. In other words
suppose that the speed v is not so great. In that case, only part of the weight
force w is “used up” by the centripetal force. So the motorcycle will fall off the
track.
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Chapter 5: Centripetal FORCE in a VERTICAL Circle

Fc =
Mv2

R

w = Mg

Suppose instead that the weight force is less than the centripetal force. Then the
weight force will be insufficient to provide enough centripetal force. Where does
the rest of the centripetal force come from? It comes from the track, specifically
the Normal Force of the track on the motorcycle.
The limiting case is for the weight force to be exactly equal to the centripetal
force. In that case, there is no need for a normal force but the motorcycle does
not fall off the track.

Fc = w and
Mv2

R
= Mg

=⇒ v =
√

gR

Note that the minimum speed v does NOT depend on the mass M . So it does
not depend on how heavy the man is, nor how heavy the motorcycle is. It only
depends upon g and the radius R.
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Chapter 6: Work and Kinetic Energy
The concept of WORK has a very precise definition in physics. Work is a phys-
ical quantity produced when a Force moves an object through a Displacement
in the same direction as the force. Work is a scalar quantity.

In physics, in order to get the Work done, there must be a force and there must
be motion caused by that force. If the force ~F is constant, and the displacement ~s
is exactly in the same direction as the direction of the force, then the magnitude
of the work is easy to calculate:

W = Fs constant force ~F has the same direction as displacement ~s
6.1

Work if the force is not in the same direction as the displacement

If the constant force ~F is not in the same direction as the displacement vector
~s, then the magnitude of the work done is given by

W = Fs cos θ constant ~F separated by angle θ from ~s (6.2)

W = ~F ·~s Work is the “dot product” of the vectors F and s (6.3)

Kinetic Energy The Energy of Moving Objects

Consider the following logical progression: When a force acts on an object of
mass m for a specific period of time causing the object to move, then work W is
done by the force. If the object has a force acting on it, then it will accelerate.
If the object was initially at rest, then after the force stops acting the object will
have a speed v. We can define the Kinetic Energy K of the object to be

K =
1

2
mv2 (VERY IMPORTANT EQUATION!) (6.5)

The kinetic energy of an object moving with speed v is equal to the work done by

the force which made the object move from rest to the speed v.

In physics Power is defined as the rate at which work is done by a force. For
a constant (time-independent) force ~F, one has the following instantaneous rate
of work for a changing displacement vector ~s

P (t) =
dW

dt
=

d

dt
(~F ·~s) = ~F ·

d~s

dt
= ~F · ~v(t) (6.19)
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Simple Example of WORK in One Dimension

The rule to remember about work is:
If it moves where you push it, then you’re getting the work done.

Consider an example of a box resting on a frictionless table. A horizontal force
~F is applied to that box. By Newton’s second law, the box will acquire an
acceleration. After the box moves a displacement ~s along the table, the force ~s
is removed. The work done in this case is given by

W = Fs constant ~F has the same direction as ~s (6.2)

Units of Work

In the standard SI system of units, work has the units of Newtons times
Meters, so one could express the units of work as N–m. There is a special
name for the “Newton–meter”, and this name is the Joule (J) after the English
physicist who did early research into forces and energy.

In the “cgs” system of units (centimeter–gram–second), work has the units of
dynes times cm, and the dyne–cm is given the special name erg. There are 107

ergs in one joule of energy.

There is also the kilowatt-hour (what you get charged for in you electric bill)
which is energy NOT power. A kW-hr = 3.6 x 106 J.

Finally, there is the atomic, nuclear, and high energy physics units called the
electron-volt abbreviated as eV, the million-electron-volt unit MeV, and lastly
the giga-electron-volt unit GeV = 109 eV. An eV = 1.6 x 10−19 J.
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Work in Two (and even Three) Dimensions

The next simplest case of Work is for two dimensions when there is a constant
Force but the displacement vector is not in the same direction as the force vector.

Consider again an object resting on a frictionless table. In this case the applied
force is not in the horizontal direction, but at some angle θ to the horizontal.
Also, the vertical component of the applied force (= F sin θ) is not sufficient to
raise the object off the table. Since there is no friction the horizontal component
of the force (= F cos θ) causes the object to accelerate along the horizontal. In

this case the work is done only by the horizontal component of the force. It is
that component of the force which moves the object in the same direction as the
component itself.

W = (F cos θ)s = Fs cos θ constant ~F separated by angle θ from ~s (6.1)

W = ~F ·~s Work is the “dot product” of the vectors F and s (6.3)

The Dot Product of two vectors and the Integral formula for Work
The dot product is a means of multiplying two vectors quantities in order to
produce a scalar quantity. The dot product is equal to the product of the
magnitudes of the two vectors times the cosine of the angle between the two
vectors. For a constant ~F = Fx ı̂+ Fy ĵ+ Fz k̂, and ~s = sx ı̂+ sy ĵ+ sz k̂ then

W = ~F ·~s = Fs cos θ = Fxsx + Fysy + Fzsz

If instead of a finite displacement vector ~s one has a series of infinitesimal dis-
placement vectors ~dr = dx ı̂ + dy ĵ + dz k̂, then there is an “infinitesimal work”

dW = ~F · ~dr = Fxdx + Fydy + Fzdz

Integration =⇒ W =
∫

2

1
dW =

∫ ~r2

~r1

~F · ~dr =
∫ x2

x1

Fxdx +
∫ y2

y1

Fydy +
∫ z2

z1

Fzdz
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Example of Work in Two Dimensions
A box is dragged across a rough floor by a constant force of magnitude 50 N.
The force makes an angle of 37o with the horizontal. A frictional force of 10 N
retards the motion. The box is moved a total of 3 m along the floor. Calculate
the work done by all the forces acting on the box.

First indicate in the “free–body” diagram all the forces acting on the box. Then
indicate the displacement vector. You should realize right away that the all
forces acting in the vertical direction do no work. The only work is done by
those forces which act in, or have a component in, the horizontal direction.

Work done by the applied 50 N force

WF = (F cos θ)s = (50 N cos 37o)(3 m) = 120 N-m = 120 J

Work done by the frictional 10 N force, which is kinetic friction, is given by

Wf = (fk cos 180o)(3 m) = (−fk)(3 m) = (−10 N)(3 m) = −30 J

Note the negative sign for the work done “by” the force of friction. The negative
sign means that work is done “on” (or against) the friction force rather than by
the frictional force. Forces of friction never produce positive work since there are

always opposite to the direction of motion.

The net work in this case is the sum of the work of the 50 N force and the work
done against friction

Wnet = WF + Wf = 120 − 30 = 90 J
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Work and Kinetic Energy

Take the same example as before, but now consider that the box has a mass of
5 kg. We define the kinetic energy of the box to be the product

K =
1

2
mv2

where v is the speed of the box after it has been moved 3 m. How can we
compute v, knowing that the box has moved from rest?

The speed v after the box has moved 3 m can be computed once the acceleration
is known. We would use the kinematics equation

v2(x) = v2

0 + 2a(x − x0) =⇒ v2(x = 3) = 2a(3)

The box starts from rest (v0 = 0) and the initial position can be taken as the
origin (x0 = 0). How can we compute the acceleration a?

The acceleration a can be computed from Newton’s second law if you know the
accelerating force and the mass. In this case the accelerating force is along the
x direction and is given by the difference of the applied horizontal force and the
friction force

Fx = F cos θ − fk = 50 cos 37o − 10 = 30 N

Fx = ma Newton’s second law

=⇒ a =
Fx

m
=

30 N

5 kg
= 6 m/s2

Evaluate the Kinetic Energy The speed may be calculated now

v(x = 3) =
√

2a(3) =
√

2 · 6 · 3 = 6.0 m/s

K =
1

2
mv2 =

1

2
5(6)2 = 90 J

The kinetic energy of the moving box equals the work done by the forces pro-
ducing the motion =⇒ Work-Kinetic Energy Theorem

KINETIC ENERGY = WORK DONE BY A FORCE
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Work Done by a Spring
A spring is an example of a device which will generate a linearly increasing force
as a function of how much the spring is stretched or how much it is compressed.
The force generated by a spring when it is stretched or compressed if given by
Hooke’s Law

Fspring = −kx

x ≡ displacement of the spring from its unstretched position
k ≡ force constant of the spring

Suppose the spring has been compressed from an initial position xi to a final
position xf where xf < xi. The spring opposes this compression and the work
done ON the spring is as follows:

W =
∫ xf

xi

Fspring(x)dx =
∫ xf

xi

(−kx)dx = −k
∫ xf

xi

(x)dx

W = −
1

2
kx2

]x=xi

x=xf

= −
1

2
k(x2

f − x2

i )

Worked Example A block is lying on a smooth horizontal surface and is
connected to a spring with a force constant k equal to 80 N/m. The spring
has been compressed 3.0 cm from its equilibrium (= unstretched) position. How
much work does the spring do on the block when the block moves from xi = −3.0
to xf = 0.0 cm?

W = −
1

2
k(x2

f − x2

i ) = −
1

2
(80 N/m)(0 − .030 m)2 = 3.6 x 10−2 J

Note that the result is positive, meaning that Work is done BY the spring in
this case.
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Work, Energy, and Power

The last physical quantity introduced in chapter 6 is Power. Power is defined
as the rate at which work is done. The more work done in a given amount of
time, then the more power that is being produced.

Power can either be average power or instantaneous power

P =
∆W

∆t

P (t) = lim
∆t→0

∆W

∆t
=

dW

dt

The units of power in the SI system is Joules/second which is defined as a watt
(W) after James Watt the inventor of the workable steam engine. There is
also the kilowatt which is 1,000 watts. Finally electric “power” bills are usually
expressed in terms of “kilowatt–hours”. By the definition of the power unit,
you can see that a “kilowatt–hour” is not a unit of power, but rather a unit of
energy. What you buy from the electric company is total energy consumption as
opposed to rate of energy consumption. It is not how fast you use the electricity
at any one time, but rather what is the total amount of electricity which you
use

Worked Example A weightlifter lifts 250 kg through a vertical distance of
2 m in a time of 1.5 seconds. What is his average power output?

First compute the work done, ∆W , and then divide by the time to do that work,
∆t. Here the weightlifter exerts a force equal to the weight of 250 kg, and that
force is used through a distance of 2 meters.

W = Fd = Mgd = 250 · 9.8 · 2 = 4, 900 J

The average power is then

P =
∆W

∆t
=

4, 900 J

1.5s
= 3, 267 W (greater than 4.3 horsepower)

The “horsepower unit” is a British system unit which is equal to 746 Watts. In
principle it is the power output of a “standard horse” whatever that is.


