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REVIEW: (Chapter 6) Work and Kinetic Energy

The concept of WORK has a very precise definition in physics. Work is a phys-
ical quantity produced when a Force moves an object through a Displacement
in the same direction as the force. Work is a scalar quantity.

In physics, in order to get the Work done, there must be a force and there must
be motion caused by that force. If the force ~F is constant, and the displacement ~s
is exactly in the same direction as the direction of the force, then the magnitude
of the work is easy to calculate:

W = Fs constant force ~F has the same direction as displacement ~s
6.1

Work if the force is not in the same direction as the displacement

If the constant force ~F is not in the same direction as the displacement vector
~s, then the magnitude of the work done is given by

W = Fs cos θ constant ~F separated by angle θ from ~s (6.2)

W = ~F ·~s Work is the “dot product” of the vectors F and s (6.3)

Kinetic Energy The Energy of Moving Objects

Consider the following logical progression: When a force acts on an object of
mass m for a specific period of time causing the object to move, then work W is
done by the force. If the object has a force acting on it, then it will accelerate.
If the object was initially at rest, then after the force stops acting the object will
have a speed v. We can define the Kinetic Energy K of the object to be

K =
1

2
mv2 (VERY IMPORTANT EQUATION!) (6.5)

The kinetic energy of an object moving with speed v is equal to the work done by

the force which made the object move from rest to the speed v.

In physics Power is defined as the rate at which work is done by a force. For
a constant (time-independent) force ~F, one has the following instantaneous rate
of work for a changing displacement vector ~s

P (t) =
dW

dt
=

d

dt
(~F ·~s) = ~F ·

d~s

dt
= ~F · ~v(t) (6.19)
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REVIEW: Example of Work in Two Dimensions
A box is dragged across a rough floor by a constant force of magnitude 50 N.
The force makes an angle of 37o with the horizontal. A frictional force of 10 N
retards the motion. The box is moved a total of 3 m along the floor. Calculate
the work done by all the forces acting on the box.

First indicate in the “free–body” diagram all the forces acting on the box. Then
indicate the displacement vector. You should realize right away that the all
forces acting in the vertical direction do no work. The only work is done by
those forces which act in, or have a component in, the horizontal direction.

Work done by the applied 50 N force

WF = (F cos θ)s = (50 N cos 37o)(3 m) = 120 N-m = 120 J

Work done by the frictional 10 N force, which is kinetic friction, is given by

Wf = (fk cos 180o)(3 m) = (−fk)(3 m) = (−10 N)(3 m) = −30 J

Note the negative sign for the work done “by” the force of friction. The negative
sign means that work is done “on” (or against) the friction force rather than by
the frictional force. Forces of friction never produce positive work since there are

always opposite to the direction of motion.

The net work in this case is the sum of the work of the 50 N force and the work
done against friction

Wnet = WF + Wf = 120 − 30 = 90 J
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Work and Kinetic Energy

Take the same example as before, but now consider that the box has a mass of
5 kg. We define the kinetic energy of the box to be the product

K =
1

2
mv2

where v is the speed of the box after it has been moved 3 m. How can we
compute v, knowing that the box has moved from rest?

The speed v after the box has moved 3 m can be computed once the acceleration
is known. We would use the kinematics equation

v2(x) = v2

0 + 2a(x − x0) =⇒ v2(x = 3) = 2a(3)

The box starts from rest (v0 = 0) and the initial position can be taken as the
origin (x0 = 0). How can we compute the acceleration a?

The acceleration a can be computed from Newton’s second law if you know the
accelerating force and the mass. In this case the accelerating force is along the
x direction and is given by the difference of the applied horizontal force and the
friction force

Fx = F cos θ − fk = 50 cos 37o − 10 = 30 N

Fx = ma Newton’s second law

=⇒ a =
Fx

m
=

30 N

5 kg
= 6 m/s2

Evaluate the Kinetic Energy The speed may be calculated now

v(x = 3) =
√

2a(3) =
√

2 · 6 · 3 = 6.0 m/s

K =
1

2
mv2 =

1

2
5(6)2 = 90 J

The kinetic energy of the moving box equals the work done by the forces pro-
ducing the motion =⇒ Work-Kinetic Energy Theorem

KINETIC ENERGY = WORK DONE BY A FORCE
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Work Done by a Spring
A spring is an example of a device which will generate a linearly increasing force
as a function of how much the spring is stretched or how much it is compressed.
The force generated by a spring when it is stretched or compressed if given by
Hooke’s Law

Fspring = −kx

x ≡ displacement of the spring from its unstretched position
k ≡ force constant of the spring

Suppose the spring has been compressed from an initial position xi to a final
position xf where xf < xi. The spring opposes this compression and the work
done ON the spring is as follows:

W =
∫ xf

xi

Fspring(x)dx =
∫ xf

xi

(−kx)dx = −k
∫ xf

xi

(x)dx

W = −
1

2
kx2

]x=xi

x=xf

= −
1

2
k(x2

f − x2

i )

Worked Example A block is lying on a smooth horizontal surface and is
connected to a spring with a force constant k equal to 80 N/m. The spring
has been compressed 3.0 cm from its equilibrium (= unstretched) position. How
much work does the spring do on the block when the block moves from xi = −3.0
to xf = 0.0 cm?

W = −
1

2
k(x2

f − x2

i ) = −
1

2
(80 N/m)(0 − .030 m)2 = 3.6 x 10−2 J

Note that the result is positive, meaning that Work is done BY the spring in
this case.
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Work, Energy, and Power

The last physical quantity introduced in chapter 6 is Power. Power is defined
as the rate at which work is done. The more work done in a given amount of
time, then the more power that is being produced.

Power can either be average power or instantaneous power

P =
∆W

∆t

P (t) = lim
∆t→0

∆W

∆t
=

dW

dt

The units of power in the SI system is Joules/second which is defined as a watt
(W) after James Watt the inventor of the workable steam engine. There is
also the kilowatt which is 1,000 watts. Finally electric “power” bills are usually
expressed in terms of “kilowatt–hours”. By the definition of the power unit,
you can see that a “kilowatt–hour” is not a unit of power, but rather a unit of
energy. What you buy from the electric company is total energy consumption as
opposed to rate of energy consumption. It is not how fast you use the electricity
at any one time, but rather what is the total amount of electricity which you
use

Worked Example A weightlifter lifts 250 kg through a vertical distance of
2 m in a time of 1.5 seconds. What is his average power output?

First compute the work done, ∆W , and then divide by the time to do that work,
∆t. Here the weightlifter exerts a force equal to the weight of 250 kg, and that
force is used through a distance of 2 meters.

W = Fd = Mgd = 250 · 9.8 · 2 = 4, 900 J

The average power is then

P =
∆W

∆t
=

4, 900 J

1.5s
= 3, 267 W (greater than 4.3 horsepower)

The “horsepower unit” is a British system unit which is equal to 746 Watts. In
principle it is the power output of a “standard horse” whatever that is.
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CHAPTER 7: Potential Energy and Conservation of Energy

The most important principle in all of Physics is the Conservation of Energy.

Energy can neither be created or destroyed but only changed from one

form into another.

In Mechanics the two forms of Energy are Kinetic Energy and Potential
Energy. The total Mechanical Energy of a system is equal to the Kinetic
Energy plus the Potential Energy.

Etotal ≡ K + U

The Conservation of Mechanical Energy
In a system where there are no frictional forces acting, the total Me-

chanical Energy is constant.

When there are no frictional forces acting, we say that there are only conservative
forces acting. Conservative forces include the force of gravity and the spring
(elastic) force.

Kinetic Energy
The Kinetic Energy is always defined the same way for any object. If you
have an object which has a mass m, and that object is moving with a speed v,
then the kinetic energy is always K = 1

2
mv2

Potential Energy
The two principle forms of Potential Energy which we deal with in this chapter
are the gravitational potential energy and the elastic potential energy of a spring.

U gravity = mgh (h is the height above some surface)

U spring =
1

2
kx2 (x is the compressed or stretched length)
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Using the Conservation of Energy to Solve Problems

A mass initially as rest slides down a frictionless inclined plane of height h and
inclination angle Θ. What is the speed of the mass when it reaches the bottom
of the inclined plane ?

Solution by Conservation of Energy

=⇒ vf =
√

2gh (independent of the mass !)

Solution by Equations of Motion and Newton’s Second Law
Calculate the acceleration ax down the plane. Then use the third kinematics
equation (v2

f(x) = v2
0 + 2ax(x − x0)).

Newton’s second law gives the acceleration as the force divided by the mass:

ax =
Fx

m
=

W sin Θ

m
=

mg sin Θ

m
= g sin Θ

The total distance traveled is the length of the plane

x − x0 = s =
h

sin Θ
Now substitute into the third kinematics equation

v2

f = v2

0 + 2axs = 2g sin Θ(
h

sin Θ
) = 2gh

=⇒ vf =
√

2gh (same answer but more complicated to derive)
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Using the Conservation of Energy with Frictional Forces Present

If there are frictional forces present, then the work done against the frictional
(non–conservative) forces is equal to the change (decrease) in the total Mechan-
ical Energy. The total Mechanical Energy is not constant when frictional forces
are present. The Mechanical Energy will decrease because of the work done
against the frictional forces.

Wfriction = (Kf + Uf) − (Ki + Ui)

Worked Example A 3 kg block slides down a rough incline 1 m in length.
The block starts from rest at the top of the inclined plane, and experiences a
constant force of friction of magnitude 5 N. The angle of the incline is 30o.
Using conservation of energy, determine the speed of the block when it reaches
the bottom of the plane.

Wfriction = (Kf + Uf) − (Ki + Ui) =⇒ −fs = (
1

2
mv2

f + 0) − (0 + mgh)

The force of friction f is given as 5 N, the length s over which it acts is given as 1.0
m, and the initial height of the block h may be found from simple trigonometry
to be 0.5 m.

−5 · 1 =
1

2
3v2

f − 3 · 9.8 · 0.5

v2

f = 6.47 m2/s2 =⇒ vf = 2.54 m/s

In this example, the total Mechanical Energy was not conserved because of the
non–conservative frictional forces. The decrease in the Mechanical Energy went
into doing work against friction, and that work actually would show up as heat.
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Using Conservation of Mechanical Energy in Spring Problems

The principle of conservation of Mechanical Energy can also be applied to sys-
tems involving springs. First take a simple case of a mass traveling in a horizontal
direction at constant speed. The mass strikes a spring and the spring begins to
compress slowing down the mass. Eventually the mass stops and the spring is
at its maximum compression. At this point the mass has zero kinetic energy
and the spring has a maximum of potential energy. Of course, the spring will
rebound and the mass will finally be accelerated to the same speed but opposite
in direction. The mass has the same kinetic energy as before, and the spring
returns to zero potential energy.

Spring Potential Energy
If a spring is compressed (or stretched) a distance x from its normal length, then
the spring acquires a potential energy U spring(x):

U spring(x) =
1

2
kx2 (k = force constant of the spring)

Worked Example A mass of 0.80 kg is given an initial velocity vi = 1.2 m/s
to the right, and then collides with a spring of force constant k = 50 N/m.
Calculate the maximum compression of the spring.
Solution by Conservation of Energy

Initial Mechanical Energy = Final Mechanical Energy
Ki + Ui = Kf + Uf

1

2
mv2

i + 0 = 0 +
1

2
kx2

=⇒ x = vi

√

m

k
= 1.2

√

√

√

√

0.8

50
= 0.152 m
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Conservation of Energy and the Loop–the–Loop

The loop–the–loop consists of a curved track whose initial point is located a
distance h above ground level. The curve goes into a vertical circle of radius R
with its bottom most point at ground level. The track and the vertical circle are
assumed to be frictionless. Why does the particle sometimes leave the vertical
circle before reaching the top most point ? Obtain an expression for the minimum
value of h such that the particle will not fall off the vertical circle portion of the
track.
We solve this problem in two steps. First we consider what is the minimum speed
v1 necessary at the bottom of the track in order to coast to the top of the track
with a speed v2 which is fast enough. As the bike coasts to the top of the track,
it is exchanging kinetic energy for potential energy. We have see previously (see
the figure above) that at the top of the track the minimum speed is the speed at
which the weight force is dedicated to providing all the centripetal force. Any
slower speed will cause the bike to fall off the track. With this condition, the
minimum speed at the top of the track is

vmin
2 =

√

gR

Knowing that this is the minimum speed, we can use conservation of mechanical
energy in order to derive the minimum speed at the bottom of the track. Essen-
tially the bike will gain 2MgR worth of potential energy in going to the top of
the track. From the figure above we see that the minimum speed

vmin
1 =

√

5gR

The next step will be to find out how high a bike must be to have a potential
energy equal to the kinetic energy at this speed vmin

1 .
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Conservation of Energy and the Loop–the–Loop

In the above figure we show the bike at an initial vertical height h above the
bottom of the circular track. The bike starts at 0 speed from this height. We
can use conservation of energy to find the speed at the bottom.

Mgh =
1

2
Mv2

1

v1 =
√

2gh

If we have v1 =
√

5gR, then
5gR = 2gh

h = 2.5R

This is the minimum height to drop a mass in order that the mass do a loop-
the-loop where the loop has a radius R.

If you can understand this problem, you know a lot.


