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Special Relativity Consequences

NOTE: This Lecture is supplemented by the 30 minute video shown in class.

Special relativity of motion is an amazingly simple theory. The two basic pos-
tulates of special relativity are easily understandably, but have startling conse-
quences.

The Two Special Relativity Postulates
#1 All the Laws of Physics may be derived in any inertial frame. No physics
measurement will distinguish any preferred reference frame.

#2 The speed of light c is the same for all observers, independent of their own
motion or the motion of the light source.

These two postulates were introduced by Albert Einstein in 1905, and were based
on his attempts to reconcile the theory of Electromagnetism as developed in the
1800s with the theory of Mechanics developed two hundred years earlier. In the
end it was Newton’s Mechanics which had to be revised and Electromagnetism
which survived unscathed.
One of the historical mysteries of science is whether Albert Einstein was aware of
the results of Michaelson and Morely which essentially are the best experimental
proof of these two postulates. The best evidence is that he did not know about
the results, somewhat surprising because Einstein knew just about everything
in the physics of his time. Instead, he based is special relativity ideas more on
the papers of Lorentz who was trying also to reconcile Electromagnetism and
Classical Mechanics.

Gedanken Experiments to Disprove Absolute Time
The first most startling result of the theory of special relativity is the collapse
of the idea of simultaneity, or equivalently of absolute time identical for all
observers whether moving or at rest relative to one another.
Einstein conjured up a lot of so-called “thought experiments” (gedanken exper-
iments in German) based on the two postulates to prove this effect, since it was
so difficult to do true experiments at the time. Most of these experiments had
to do with moving trains very common in Europe, although now days we can
think of moving space ships.
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Special Relativity Consequences
No Absolute Time
The first Gedanken experiment involves a moving train in which an observer O′

(Liz) is seated exactly in the center. Two lightning bolts strike each end of the
car, just as the observer O′ passes another observer O (Mark) who happens to
be standing alongside the train tracks. The light from the two lightning bolts
reaches O at exactly the same time according to how O sees things. However, O′

will see the light from the front of the car arriving before the light from the rear
of the car. Hence, O′ will say that the one lightning bolt preceded the other.
But you might say O′ is wrong because she is in a moving frame of reference.
However, O′ may not know she is in a moving frame of reference, and may
never know in some cases of moving reference frames. In particular, O′ cannot
determine that she is moving by measuring a different value for the speed of
light compared to what O will measure. Moreover, from her point of view it
might be O who is moving backwards and therefore he got things mixed up in
his frame. Hence, O′’s viewpoint of non-simultaneous events is just as valid as
O’s viewpoint of simultaneous events.

Time Dilation
We saw above that two observers moving relative to one another may be in
disagreement with regards to when two “events” are simultaneous. An “event”
means something happened at a given spatial location (x, y, z), and a given time
t. This suggests something might be happening to their clocks.
To show this is true, Einstein thought up of another experiment. He used again
the same moving train with the same two observers O and O′. Observer O′

shines a brief flash of light from the floor of the train car up to a mirror on the
ceiling from which the light is reflected down to the floor again. Somehow O′

manages to get the time difference between when the flash of light leaves the
floor to when it returns. (That’s the nice thing about Gedanken experiments,
all the really hard technical parts are left out.) He calls this time δt′. And since
she knows how far it is from floor to ceiling, distance d, she can use this time
interval ∆t to make a clock calibration.
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Time Dilation
Time intervals as measured by two observers
Liz will measure a time interval:

∆t′ =
2d

c
This means that she will calculate the speed of light as:

=⇒ c =
2d

∆t′

Meanwhile, back alongside the tracks, observer O Mark sees things a little dif-
ferently. In his view, the light flash has not simply traveled straight up and
down, but rather has gone on two diagonal paths of length c∆t/2 which form
the hypotenueses of two right triangles. Each of the triangles has a common
height d, and an equal base length v∆t/2. Note that we are using a different
symbol ∆t for the time interval as measured by Mark.
So Mark will use the Pythagorean theorem to calculate that:

(c∆t/2)2 = (v∆t/2)2 + d2

This he will measure ∆t to be

∆t =
2d√
c2 − v2

=
2d

c
√

1− v2/c2

Now we can relate ∆t to ∆t′ by substituting ∆t′ = 2d/c. This produces

∆t =
∆t′√

1− v2/c2

The time ∆t′ measured by Liz is shorter than the time ∆t measured
by Mark!
Now you see again the Lorentz contraction factor 1.0/

√
1− v2/c2, which occurs

so often in relativity that it is given its own special symbol γ

γ =
1.0√

1− v2/c2
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Time Dilation
The result of this thought experiment, based on the constancy of the speed of
light, is the following:

Two observers moving relative to one another and measuring the time interval
between two events will come up with different values for the time interval.

∆t =
∆t′√

1− v2/c2
= γ∆t′

γ =
1.0√

1− v2/c2

Again, it makes no sense to ask “Who is right?, since they both are right in their
own frames of reference.

Proper Time
There is an important difference between the two observers in the previous
Gedanken experiment. Liz, in the moving train car, measured the start and stop
times at the same space location. So her events can be written as (x′1, y

′
1, z
′
1, t
′
1)

and (x′2, y
′
2, z
′
2, t
′
2) where x′1 = x′2, y

′
1 = y′2, z

′
1 = z′2, and t′2 = t′1 + ∆t′

On the other hand Mark, standing alongside the tracks, saw the start and stop
times occur at two different space locations. Suppose we take the x direction to
be the one along which the train is moving with speed v. Then Mark’s events
are written as (x1, y1, z1, t1) and (x2, y2, z2, t2) where x1 = x2 + v∆t, y1 = y2,
z1 = z2, and t2 = t1 + ∆t.
The reference frame in which the interval between two events is measured at the
same place defines the proper time interval for the events. The proper time is
always measured with a single clock at rest in its own rest frame.

Proof of Time Dilation
Now Gedanken experiments are fine for illustrating a point, but in reality they
prove nothing physically about the validity of the special relativity assumptions.
Confirmation of the time dilation prediction would come only about forty years
after the publication of the theory of special relativity.
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Experimental Proof of Time Dilation
Muon Decay
The best known example of time dilation is the observation of high energy par-
ticles called muons coming down from the upper atmosphere onto the surface.
A muon is nothing more than a “heavy” electron, about 200 times the mass of
an electron. It is created in the upper atmosphere when atoms there are hit by
high energy protons called cosmic rays which travel all through the universe.
The big difference, besides the mass, between an electron and a muon is that
a muon is unstable. It will decay after about 2.2 microseconds into an electron
plus a couple of neutrinos. For all practical purposes the muon is traveling near
the speed of light, say 0.99c when it is created. Were it not for relativistic time
dilation, then the muon would decay after just about 600 meters, and never reach
the Earth’s surface. However, because of time dilation, the muon’s internal clock
runs much slower. In fact, for a speed v = 0.99c we have

γ = 1.0
√

1− v2/c2 ≈ 7.1

Hence, to a stationary observer looking at the moving muon, the muon’s lifetime
will be more like 16 microseconds. And in 16 microseconds, the muon could make
it a distance of 4800 meters. That’s about 15,000 feet which is where the muons
could be created in abundance.
In 1976, muons were created in the CERN accelerator laboratory and accelerated
to a speed of 0.9994c. This then gave a γ ≈ 30, and the accelerated muons were
observed to live about 30 times as long as muons created with near 0 speed.

Use of Real Clocks
Time dilation applies to real clocks as well. This was demonstrated in 1971
when four identical cesium atomic clocks were synchronized, and then two of
them were flown in an airplanes, one going West and the other East. Relative
to the ground based clocks, the eastward flying clock lost 59 nanoseconds, while
the westward flying clock gained 273 nanoseconds. These results, taking into
account that the Earth based clocks were also moving in space, were exactly
consistent with the predictions of special relativity
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The Twin Paradox
Soon after Einstein’s publication of the theory of special relativity and its time
dilation predictions, there came a serious objection which became know as the
Twin Paradox. This scientific riddle was the subject of many theoretical papers,
until the flight of the cesium clocks which resolved the issue once and for all.
The premise of the paradox is very simple. Two twins, Speedo and Goslo, are
both 20 years old. Speedo builds herself a rocket ship and accelerates to near the
speed of light on a journey to another star 30 light years away from Earth. She
then returns home, having aged only about 10 years because of time dilation.
However, on Earth about 80 years has elapsed and her brother is looking like
George Burns just before he died.
The paradox is the following: Could we look at the situation from Speedo’s
point of view that it was Goslo who went (“backwards”) at near the speed of
light. After all, all motion is relative. In that case it should be Goslo who stayed
younger and Speedo who aged.
Now both conclusions cannot be correct, and when the spaceship returns to the
Earth someone must be older.
The resolution of the paradox is that the situation is not completely symmetrical.
We can distinguish the motion of the two twins because one twin was accelerating
(and decelerating) and the other was not. So the proper frame to analyze the
motion is the inertial frame, which is Goslo’s frame. He is the one who ages,
just has it was for the stationary cesium clocks in the airplane experiment.
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Length Contraction
We have seen that there is a proper time interval between two events taking place
at the same physical location in a given reference frame. In any other reference
frame moving with respect to this one, the measured time interval will be longer
by the Lorentz factor γ
There is also the concept of a proper length for an object. The proper length is
the length of the object as measured in the reference frame where the object is
at rest. The length of the object as measured in any reference frame in which
the object appears to be moving will be contracted by the same Lorentz factor.
Hence we speak of Lorentz contraction of moving object:

L =
LP
γ

= (1− v2

c2 )LP

Here L is the length of the object as measured in a frame in which the object
appears to be moving, and LP is the length as measured in the objects own
rest frame. The length contraction takes place only along the direction of the
motion.
The frame of reference for the proper time measurement is always different from
the frame of reference for the proper length measurement.
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Chapter 9: The Lorentz Coordinate Transformation
Consequences of the Relativity Postulates
We have seen that special relativity, and especially the principle that the speed
of light is the same for all persons, leads to dramatic consequences. The most
important of these are the dismissal of absolute time or simultaneity for all
observers.
With time no longer as an absolute, we need a new set of equations which will
enable us to express mechanics quantities in any inertial reference frame moving
at a speed v with respect to another frame. Previously there was the Galileo
Equations:

x′ = x− vt
y′ = y

z′ = z

t′ = t

where we can always assume that the relative motion is in the x direction.
Now with relativity there are a new set of equations linking the two reference
frames. These equations are known as the Lorentz coordinate transformation,
after H. Lorentz who was mentioned so prominently in the video as being Ein-
stein’s most important teacher. These equations, which can be proved relatively
easily, are:

x′ = γ(x− vt) 9.8a

y′ = y 9.8b

z′ = z 9.8c

t′ = γ(t− v

c2x) 9.8d

γ ≡ 1√
1− v2/c2

The time transformation, Eq. 9.8d, in particular is the most strange. This
equation essentially says that the time as measured by one person is dependent
upon the time and position as measured by a person moving with speed v.
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The Lorentz Velocity Transformations
Galileo Classical Velocity Transformation Equation
Again, in Newton’s time, there was a very simple way to compute the speed
of an object u′ as observed in a frame moving with a speed v with respect to
another frame in which the object’s speed was measured to be u. We simply
subtracted the speed of the moving frame (assumed to be in the x direction):

u′x = ux − v; u′y = uy; u′z = uz

Lorentz Relativistic Velocity Transformation
As you might expect, since Galileo’s coordinate transformation equations no
longer work, neither will his velocity transformation. And this has to be the case,
otherwise we could get into the situation of adding speeds such that a particle
moves faster than light speed. That, according to relativity, is impossible.
For simplicity we again take two reference frames moving at a speed v with
respect to each other, in the x direction. We can obtain from the Lorentz
coordinate transformation, the following velocity transformation equations:

u′x =
ux − v

1− uxv/c2

u′y =
uy

γ(1− uxv/c2)

u′z =
uz

γ(1− uxv/c2)

Note that now even the perpendicular velocity components transform differently
from the Galileo case. This is because of the time dilation.
You should prove to your self that in the limit of very small speeds v of relative
motion, then the Lorentz transformations become equal to the Galileo transfor-
mations.
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Example Using Lorentz Velocity Transformation Equations
Addition of Velocities
Newcomers to the theory of relativity often wonder how it can be that nothing
can be made to go faster than the speed of light. For example, you might think
of a person going very fast, near the speed of light, and then throwing an object
at a high speed in this moving frame. Then you might say that relative to a
person not moving, then the thrown object should be going faster than light
speed.
However, the Lorentz velocity transformation equations simply do not allow that
to happen. A good example from the text is on page 273.
A person is on a motorcycle going at a speed 0.8c relative to a stationary ob-
server. The motorcyclist throws a ball at a speed of 0.7c relative to himself in
the same direction that the motorcycle is traveling. What speed is seen by the
stationary observer.
In the classical Galileo transformation, one would simply add the two velocities
in the same direction. This would give a speed of 1.5c which is impossible
according to relativity.
To see how this comes about, just use the Lorentz velocity transformation equa-
tion:

ux =
u′x + v

1 + u′xv/c
2

In this case, the speed of the moving frame v = 0.8c. The speed as seen in the
moving frame is u′x = 0.7c. So we have

Stationary observer sees ux =
0.8c+ 0.7c

1 + (0.7c)(0.8c)/c2 =
1.5c

1.56
= 0.962c

No matter how large you make v, the relative speed, and no matter how large
you make the speed in the moving frame u′ (but always less than c), you will
never get the speed in the stationary frame to be greater than c.
On the other hand, if you have a speed u′ = c in the moving frame, then you can
just substitute in and find that the stationary observer will also measure u = c

no matter what the relative speed v between the two observers.
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Other Relativistic Kinematic Variables
All the classical kinematic variables have expression in relativity of course. Those
expressions must always reduce to the classical (Newton or Galileo) forms when
the speed u of the object is very much less than c.
Relativistic Momentum
The expression for relativistic momentum for a particle of mass m and velocity
~u is simple enough

~p =
m~u√

1− u2/c2
= γm~u 9.14|

Again, as the speed u becomes very much less than c, this means γ approaches
one and the relativistic momentum and the classical momentum become equal.

Relativistic Newton’s Second Law
Classically, Newton’s Second Law is stated as ~F = m~a. The relativistic version
is

~F =
d~p

dt
9.16

However, because of the Eq. 9.8 time transformation change, and in particular
the complication of the speed dependent denominator, then it is not possible to
change Eq. 9.16 into Eq. 9.14.

Relativistic Kinetic Energy
Once you have the expression Eq. 9.16 for relativistic force, it is straightforward
but somewhat tedious (see page 297) to calculate the work done by a force over
a certain distance. That becomes also the Kinetic Energy, for which the result
is:

K =
mc2√

1− u2/c2
−mc2

If you expand this expression as on page 298, and drop the higher order terms
(if u is very much less than c), then you will recover the classical expression
K = mv2/2.
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The Equivalence of Mass and Energy
Relativistic Kinetic Energy and the Total Energy
The expression for relativistic kinetic energy

K =
mc2√

1− u2/c2
−mc2

can be rewritten as
K = γmc2 −mc2

Einstein stared at this expression for a while and then decided to call mc2 the
rest mass energy. It was a profound insight. No one before had equated mass
and energy. They seemed to be fundamentally distinct quantities. But Einstein
saw that this classical concept also had to fail. Mass was actually just another
form of energy.
Once he had the rest mass energy concept, Einstein then simply said that an
object moving at a speed u has a total energy E given by

E =
mc2√

1− u2/c2
= γmc2

The quantity m was an invariant, the same in all frames of reference.

Fusion and Fission
This chapter concludes with a discussion of fusion and fission. Very simply these
two processes are based on the E = mc2 formula. In fusion, one starts with two
light masses, say two deuterium nuclei, and then fuses (combines) these two into
another nucleus called Helium. The Helium nucleus has less mass than the two
deuterium nuclei. So energy is released according to the mass difference. On the
other hand, in fission, a heavy nucleus splits into two lighter nuclei. Again the
final state has less total mass than the initial state, so energy is released.
Naturally, you might wonder has to why the masses of nuclei behave the way
they do. It’s a pretty simple explanation involving a balance between the short-
ranged strong force and the much weaker, but infinite range electric force.


