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CHAPTER 13: Wave Motion

A wave is the propagation of energy (motion) through a medium. When a wave
propagates, the medium is disturbed from its equilibrium position for a short
period of time and then returns to its normal position. Think of the “wave”
which travels around the fans in a football stadium. The medium here is the
football fans, and the motion is a pulse movement standing up and then sitting
down.

A transverse wave propagates in a direction perpendicular to the motion of the
medium (again think of the football wave). Water waves are a good example of
transverse waves. A longitudinal wave has its motion in the direction of the
displacement. Sound waves are a good example of longitudinal wave motion.

No matter what the wave, there is no net displacement of the particles in the
medium once the wave has passed.

A wave is characterized by a displacement y which occurs at a given position x

and at a given time t. Therefore, in order to describe mathematically the equation
of a wave, one must write y as a function of x and t:

y(x, t) = f(kx− ωt) (wave traveling in the + x direction) (13.1)

y(x, t) = f(kx+ ωt) (wave traveling in the − x direction) (13.2)

Two or more waves may be traveling through a single medium. When these waves
pass through one another, the exhibit the phenomenon of interference which is
a consequence of the superposition principle. When there are two waves at
the same position x at the same time t, the net displacement is the algebraic sum
of the displacements of the two individual waves.

For the case of a stretched (guitar) string or cable under a tension F and having
a mass M and length L, the speed of a wave pulse is

v =

√√√√F
µ

where µ ≡ M

L
; v = fλ =

λ

T
(harmonic waves) (13.20, 13.11)



Lecture 21: Waves Motion 2

The Two Types of Waves

Transverse Waves

The most familiar type of wave motion is that of waves on a beach. This motion
should give you a good idea of the wave phenomenon. It is the transmission of
energy, manifested by the up and down motion of the water, through a medium.
Think of a seagull or a duck floating on the water. Before a wave hits, the bird
is motionless. Then the bird is successively raised up and lowered by the moving
water, and finally the bird goes back to its original height. The same is true of
the water itself. Except when the wave is passing through, the molecules of the
water are undisturbed from their positions. They occupy the same positions after
the wave as before.

This type of water wave is a transverse wave. The energy contained in the
wave pulse causes the medium to move up and down which is perpendicular to
the direction in which the wave pulse is propagating.

Wave motion is an important subject of study because it is the basis for all our
electronic communication. Light itself is a wave phenomenon, and the heat from
the sun reaches us by infra–red rays, which is all part of the same theory of electric
and magnetic waves.

Longitudinal Waves

The second type of wave motion is longitudinal waves. In this type of wave
propagation, the energy of the wave causes the medium to move back and forth in
a direction parallel to the direction of propagation of the wave. Sound waves are
the most important examples of longitudinal wave motion. Another example
would be the effect of a gust of wind blowing through a field of wheat. One can
see the stalks of wheat “rippling” in the field, moving back and forth, as the gust
moves through. Thus the song phrase “amber waves of grain”.
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The Equation of Motion of a Traveling Wave in One Dimension

Fundamentally a wave travels. We consider first the simplest case of a sinusoidal
wave traveling in only one dimension, say x. The displacement that the wave
causes we say is in the y direction. The wave is characterized by an amplitude
ym, a wavelength λ and a frequency f , as we saw in the previous lecture.

ω = 2πf ; T =
1

f
(13.8)

The displacement y must be a function of both the position x and the time t. If
the shape of the wave does not change as it moves along, then we can write a
special form of this dependence for a sinusoidal wave:

y(x, t) = ym sin (kx− ωt) (13.9)

Fig. 13.8 gives “snapshots” of a traveling wave on the x and the t axes. The
parameter k is related to the wavelength k ≡ 2π/λ(Eq. 13.7).

The speed of a traveling wave

The speed of a traveling wave is given by the important formula:

v = λf (13.11)

This can be obtained by looking at consecutive snapshots of the traveling wave
(see Fig. 13.8 separated by a time ∆t and then computing the distance ∆x traveled
in that time. The speed will be the ratio of ∆x/∆t.
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Using the Wave Equation

Consider the sinusoidal wave given by the formula

y(x, t) = 0.00327 sin (72.1x− 2.72t)

where the three numerical constants are in meters, rad/meter, and rad/s. What
is the amplitude, the wavelength, the frequency, and the speed of this wave?

To solve this, all one has to do is compare with the basic sinusoidal wave equation:

y(x, t) = ym sin (kx− ωt) (13.9)

Then it is simply a matter of comparing the components of this equation with
those in the example:

coefficient of sine function = ym = 0.00327 meters

coeffiecient of x = k = 72.1 rad/m =⇒ λ =
2π

k
= 0.0871 meters

coefficient of t = ω = 2.72 rad/s =⇒ f =
ω

2π
= 0.433 Hz

The wave speed can be computed from v = λf

v = λf = 0.0871 · 0.433 = 0.0377 m/s
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The Velocity of Waves on a String Under Tension

This being “Music City” we all know about guitars and guitar strings. Guitar
strings, which can be metallic or non–metallic, are of varying lengths according
to the pitch (frequency) of the sound. The guitar string is tuned to the correct
sound by changing slightly the tension using a turn screw in the neck of the guitar
at the end of the string. The reason that this works is that the tension of the
string determines the velocity of the wave in which is generated when the guitar
string is plucked.

v =

√√√√F
µ

(13.20)

where µ is the mass per unit length of the string µ = M/L. By making the
tension greater, then the velocity increases. In turn, an increase in velocity leads
to a higher frequency f of the sound.

v = fλ =⇒ f =
v

λ
(13.13)

where the wavelength of the wave motion in the guitar string is fixed by the
length of the string, which we will discuss later.

Worked Example of a Wave Traveling on a String

A uniform string has a mass of 0.3 kg and a length of 6 m. Tension is maintained
on the string by suspending a 2 kg mass from one end. Find the speed of a
sinusoidal wave in the string:

v =

√√√√F
µ

=

√√√√ F

M/L
=

√√√√√(2.0 · 9.8)

0.3/6
= 19.8 m/s
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Superposition and Interference of Waves

A very interesting facet of wave theory is the superposition principle

If two or more traveling waves are moving through a medium, the resultant wave
function at any point is the algebraic sum of the wave functions of the individual
waves. What this means is that two waves traveling in a string act independently
of one another. Two waves can even pass through one another without disturbing
their individual shapes. The addition (algebraic sum) of the two waves is called
interference. For example, if the peak of one wave meets the minimum of a
second wave of equal amplitude, then there will be no net displacement of the
medium. This is called destructive interference. On the other hand if the
peak of one wave meets the peak of a second wave, or if the minima of the two
waves coincide, then the two waves reinforce each other and the net displacement
is doubled. This is called constructive interference. When two waves traveling
in the same direction, with the same amplitude ym, the same angular frequency ω,
and the same wavelength λ = 2π/k, but separated by a phase difference φ meet
at the same place, they will add algebraically (superposition)
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Reflection and Transmission of Waves

Another interesting phenomenon about wave motion is what happens when a
wave pulse traveling along a string hits a solid wall to which the string is firmly
attached. What happens is that the wave is reflected and inverted. On the other
hand, if a wave is traveling along a string and gets to the end of the string which
is not held tight but is free to move, then the wave is reflected but not inverted.

A third possibility is the intermediate case. Suppose that there are two strings
of different densities which are tied together. A wave pulse is traveling along
the first (lighter) string. In that case there will be an inverted reflected inverted
wave along the first string, and a non–inverted transmitted wave along the second
string. On the other hand, if the wave pulse is first traveling along the heavier
string, both the transmitted and the reflected waves will be non–inverted.

When a wave pulse travels from medium A to medium B, and medium B is denser
than medium A (=⇒ vA > vB), then the reflected wave is inverted. Conversely, if
medium A is more dense than medium B (=⇒ vB > vA), then the reflected wave is
non–inverted. In either case, the transmitted wave is non–inverted. What about
the amplitudes of the reflected and transmitted waves?
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Transverse Velocity, Acceleration, and Energy in Waves

We have defined waves as energy propagating through matter. Now we will see
exactly how much energy we have in a wave. First we start with the simplified
formula for a harmonic wave:

y(x, t) = A sin (kx− ωt) (13.9)

Now we compute the velocity in the y direction

vy =
dy

dt x=constant
=

d

dt

(
A sin (kx− ωt)

)
= −ωA cos (kx− ωt)

This formula resembles very much the formula for the velocity in simple harmonic
motion, and that’s exactly why these are called harmonic waves. We remember
that the maximum velocity in SHM is given by

vmaxy = ωA

Next, we take an element length along the x direction, ∆x, and look at how much
energy is contained in that element. From our study of simple harmonic motion
we know that the total energy is given by one–half the mass times the square of
the maximum velocity

∆E =
1

2
(∆m)(vmaxy )2 =

1

2
(∆m)(ωA)2

This is the energy contained in a length ∆x which contains an amount ∆m of
mass.

∆E =
1

2
(∆m)ω2A2 =

1

2
(µ∆x)ω2A2

Lastly we can compute the power in a wave, how much energy is being transmitted
per unit time

P =
dE

dt
=

1

2
µ

∆x

∆t
ω2A2 =

1

2
µvω2A2 (13.23)

The power in a wave is linearly proportional to the velocity of the wave, and
quadratically proportional to the amplitude of the wave. So if you are in the surf
and you see a wave coming which is twice as high as the previous waves, prepare
to have yourself clobbered with four times as much energy.


