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REVIEW: Going from ONE to TWO Dimensions with Kinematics

In Lecture 2, we studied the motion of a particle in just one dimension. The
concepts of velocity and acceleration were introduced. For the case of constant
acceleration, the kinematic equations were derived so that at any instant of
time, you could know the position, velocity, and acceleration of a particle in
terms of the initial position and the initial velocity. Now the same thing will be
done in two dimensions. It is important that you recall what you have learned
in the one dimension case.

Review of one dimension, constant acceleration kinematics

In one dimension, all you need to know is the position and velocity at a given
instant of time:

x(t) = x0 + vx0t+
1

2
axt

2

vx(t) = vx0 + axt

Note that I have put a sub–script x in these above equations. For strictly one
dimensional motion, such a sub–script is superfluous. However, it is useful in
extending your knowledge of kinematics to two dimensions.

Extension of kinematics to two dimensions

In two dimensions, say X and Y , you need to know the position and velocity
of particle as a function of time in two, separate coordinates. The particle,
instead of being confined to travel only along a straight horizontal (or vertical)
line, is now allowed to move in a plane. The extension of kinematics to two
dimensions is very straightforward.

For the X coordinate: For the Y coordinate:

x(t) = x0 + vx0t+
1

2
axt

2 y(t) = y0 + vy0t+
1

2
ayt

2

vx(t) = vx0 + axt vy(t) = vy0 + ayt
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Worked Example of Two Dimensional Motion pages 79–80

A particle moves in the xy plane with an x component of acceleration ax =
4 m/s2. The particle starts from the origin at t = 0 with an initial velocity
having an x component of 20 m/s, and a y component of −15 m/s. (There is no
y component of acceleration =⇒ ay = 0.)

a) What are the x and y components of the velocity vector as a function of
time ?

b) What are the velocity and speed of the particle at t = 5 s ?

c) What are the x and y components of the position vector as a function of
time ?

a) Velocity kinematics equations:

vx(t) = vx0 + axt = 20 m/s + 4 m/s2t

vy(t) = vy0 + ayt = −15 m/s

v(t) ≡ vx(t) î + vy(t) ĵ = (20 m/s + 4 m/s2t) î− (15 m/s) ĵ

b) Velocity and speed at t = 5 s

Substitute for t = 5 s in the above equations for v(t)

v(t = 5) = (20 + 4(5)) î− 15 ĵ = 40 m/s î− 15 m/s ĵ

The speed is obtained by using, again, the Pythagorean theorem

v =
√
v2
x + v2

y =
√

(40)2 + (−15)2 = 42.7 m/s

Θv = tan−1 vy
vx

=
−15

40
= −20.6o
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Worked Example of Two Dimensional Motion pages 79–80

A particle moves in the xy plane with an x component of acceleration ax =
4 m/s2. The particle starts from the origin at t = 0 with an initial velocity
having an x component of 20 m/s, and a y component of −15 m/s. (There is no
y component of acceleration =⇒ ay = 0.)

a) What are the x and y components of the velocity vector as a function of
time ?

b) What are the velocity and speed of the particle at t = 5 s ?

c) What are the x and y components of the position vector as a function of
time ?

c) The separate position functions x(t) and y(t), given that at t = 0 the values
are x0 = 0 and y0 = 0:

x(t) = x0 + vx0t+
1

2
axt

2 =⇒ x(t) = 20( m/s)t+ 2( m/s2)t2

y(t) = y0 + vx0t+
1

2
ayt

2 =⇒ y(t) = −15( m/s)t

The general position vector r(t) is then given by

r(t) = x(t) î + y(t) ĵ = (20( m/s)t+ 2( m/s2)t2) î + (−15( m/s)t) ĵ

We can determine the velocity vector ~v(t) by taking the time derivative of the
position vector:

v(t) =
dr(t)

dt
= (20 + 4t) î− 15 ĵ



Lecture 5: Projectile motion, uniform circular motion 4

Special Case of PROJECTILE Motion

There is a special, very important case of two dimensional motion with con-
stant acceleration. This is the case of projectile motion for which the vertical
motion is governed by gravity, and there is no acceleration in the horizontal
direction. So what can one say about the velocity in the horizontal direction?

Projectile Motion, no horizontal acceleration, ax = 0

vx(t) = vx0 + axt =⇒ vx(t) = vx0

x(t) = x0 + vx0t+
1

2
axt

2 =⇒ x(t) = x0 + vx0t

general kinematic equations =⇒ specific projectile motion equations

In projectile motion, the horizontal velocity is constant and remains equal to the
initial velocity. It is most important that you realize and remember that fact.
By consequence, the distance traveled horizontally increases linearly with the
duration of the time traveled.

Projectile Motion, vertical acceleration =ay = −g

vy(t) = vy0 − gt

y(t) = y0 + vy0t−
1

2
gt2
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Special Case of PROJECTILE Motion: Common time parameter

In the projectile equations we have written separately the x position as a function
of time, x(t), and the y position as a function of time, y(t). Now in each equation
it is the same time that we are using. It is exactly the same tick on the clock or
number on the digital watch that is being used. So, we may solved for the time
variable from the x(t) equation, and substitute that in the y(t) equation.

x(t) = x0 + vx0t =⇒ t =
x

vx0

Now substitute this in the y(t) equation.

y(t) = y0 + vy0t−
1

2
gt2 = y0 + vy0(

x

vx0
)− 1

2
g(

x

vx0
)2

y(x) = y0 +
vy0

vx0
x− 1

2

g

v2
x0
x2

The Trajectory Equation

The position Y as a function of the position X is given a special name:
the trajectory equation

y(x) = y0 +
vy0

vx0
x− 1

2

g

v2
x0
x2

The motion of a projectile, in terms of the x and the y positions is a parabola.
Notice, that on the left side, we have switched from writing y(t) to y(x) because
on the right hand side we have eliminated the time coordinate t in favor of the
position coordinate x.
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Prototype Problem for Projectile Motion

Suppose a cannon is fired at ground level with some initial velocity ~v. That is,
the cannonball exits the cannon with a speed v at some angle θ with respect to
the horizontal axis. Describe the motion of the cannonball. Specifically

1) How high h (vertical direction) does the cannonball go ?

2) How far R horizontal direction does the cannonball go?

3) How much time t1 does it take for the cannonball to reach its maximum
height?

4) How much time does it take before falling back to the ground?

How high h does the cannonball go?

First we realize that the cannonball executes a parabolic path (see Fig. 3.7 on
page 83 in the text).
At the highest point of the trajectory we know that its vertical velocity compo-
nent is 0. So we have

vy(t1) = 0 = vy0 − gt1 =⇒ t1 =
vy0

g
=
v0 sin θ0

g

where we take t1 to be the time to reach the maximum height. Note: vy0 =
v0 sin θ0 where θ0 is the initial direction of the velocity vector.
Now we can use this time t1 to substitute into the vertical position equation:

y(t1) = h = y0 + vy0t1 −
1

2
gt21

h = 0 + vy0 ·
vy0

g
− 1

2
g(
vy0

g
)2 =

v2
y0

2g
=
v2

0 sin2 θ0

2g

So we have answered parts 3) and 1) above, and we should be able to quickly
get the answer for part 4). What is the answer to part 4)?
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Projectile Equations: Initial Position at Origin

The trajectory equation was previously shown to be:

y(x) = y0 +
vy0

vx0
x− 1

2

g

v2
x0
x2 (3.13)

In terms of the cannonball problem, where we specify v and θ, instead of vx0 and
vy0, and have x0 = 0 = y0 this is easily transformed to be:

y(x) = (tan θ0)x−
( g

2v2
0 cos2 θ0

)
x2 (3.14)

Horizontal Range

A distance of interest is the Horizontal Range which the text symbolizes with
the letter R. The horizontal range is the x distance which the projectile travels
before returning to the ground level. The solution for R can be obtained by
solving trajectory equation for y(R) = 0:

y(R) = 0 = (tan θ0)R−
( g

2v2
0 cos2 θ0

)
R2

One solution is R = 0 (why?), and the other solution is given by

R =
v2

0 sin 2θ0

g
(3.16)

Note that the maximum value of the Range occurs at θ0 = 45o, and is given by:

Rmax(θ0 = 45o) =
v2

0

g

You should also convince yourself that different values θ0 which are symmetric
about θ0 = 45o will give the same value for the Range.
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Worked Example: “Shoot–the–Monkey” demonstration In the first edi-
tion of this text there was a photograph of what is sometimes called the “Shoot–
the–Monkey” demonstration. The basic idea is that a hunter spies a monkey
hanging from a tree branch. The hunter knows that when he fires his rifle, the
monkey will drop instantaneously from the tree. Where should the hunter aim
his rifle: 1) above the monkey, 2) at the monkey, or 3) below the monkey?

How do you quantify the fact that an “intercept” has occurred, in other words
the projectile fired from the gun hits the dropping target ?

An intercept will occur if at the same time the projectile and the target are at
exactly the same coordinates (x, y)

1) Since the target is just dropping, its horizontal position remains the same at
all time: x ≡ xT

2) Now calculate how long it takes the projectile to reach the x = xT

x(t) = vx0t = (v0 cos θ0)t

=⇒ t(intercept) ≡ tI =
xT

v0 cos θ0

3) Now calculate the vertical position yP where the projectile is at t = tI

yP (tI) = vy0tI −
1

2
gt2I = (v0 sin θ0)(

xT
v0 cos θ0

)− 1

2
g(

xT
v0 cos θ0

)2

yP (tI) = xT tan θ0 −
1

2
g
( xT
v0 cos θ0

)2

4) For the dropping target, its initial height y0 = xT tan θ0, its initial velocity is
0, and so its position at t = tI is given by:

yT (tI) = y0 −
1

2
gt2 = xT tan θ0 −

1

2
g
( xT
v0 cos θ0

)2

So both the target and the projectile meet at the same (x, y) coordinates simul-
taneously. Notice that this result is independent of v0.
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Circular Motion and Motion in a Curved Path
We have stated that acceleration is the time rate of change of vector velocity

~a = lim
∆t→0

~∆v

∆t
=
d~v

dt

Now there are two ways that one can get a non-zero value for ~∆v. The first, and
most obvious, way is to have a change in the magnitude of ~v. This is what we
normally think of as acceleration: an increase (decrease deceleration) of speed.
However, and this is not so obvious at first glance, we can also get a change
in the velocity vector even if the magnitude v does NOT change. How is this
possible. Simple. Just change the direction of the velocity vector ~v. The change
in the direction of ~v, even if the magnitude v stays constant, produces a ~∆v.

Motion in a Circle at Constant Speed
The simplest case of changing the direction of the velocity vector without chang-
ing the magnitude v is to have motion in a circle of constant radius r at a constant
speed v. According to the above discussion, we must then have an acceleration.
The magnitude of this acceleration is easily proven (page 87–89) to be:

ac =
v2

r
(3.17)

Note that we have attached a subscript c to the symbol for this acceleration.
The reason to use this subscript is to indicate the direction which in this case
is along the radius towards the center of the circle. This kind of acceleration is
called centripetal acceleration meaning center-seeking acceleration.

Acceleration Has Two Components
In two dimensional motion acceleration has two Cartesian components ~a =
ax î + ay ĵ. The term Cartesian means using a rectangular coordinate system.
However, in some cases it is more useful to think of the tangential and the radial
components of the acceleration. It is still the same acceleration, but expressed
in a different coordinate system.

~a = ~at + ~ac

The tangential component is in the direction tangent to the path. This com-
ponent of acceleration increases the magnitude of the velocity. The radial or
centripetal component of the acceleration changes the direction of the velocity
vector.
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Relative Velocity
Different Coordinate Frames
As we saw on the last page, the same vector may be decomposed into its com-
ponents in different coordinate systems. The idea of coordinate systems is an
important one which we have been using so far without too much thought. How-
ever, the subject of coordinate systems (also called reference frames) is extremely
important in Physics. In fact, it was by a study of how Physics is derived in
different reference frames that Albert Einstein came up with his famous Theory
of Relativity. We will study Relativity in detail (Chapter 9) right after Spring
Break. For now we just show some simple examples.

Questions About Moving Reference Frames
Suppose you are in a train, and the window shades down and the track is very
smooth, quiet, and straight. Can you tell that you are moving? For that matter,
seated in the classroom, can you tell that the Earth is moving around the Sun?
Suppose the train goes around a sharp curve, again with the window shades still
shut. Can you tell whether this is happening?
Same train and on a straight track, but the window shades are up and you can
see that you are moving very fast, say 100 miles/hour. You decide to stand in
the aisle and jump straight up as high as you can. Where to you land in the
aisle? What does your motion look like to a fellow passenger? What does your
motion look like to someone looking through the window?

Velocities and Moving Reference Systems
Suppose that there is one coordinate system O′ moving at a constant velocity
~VOO′ with respect to another coordinate system O. Now a particle P is observed
to be moving in coordinate system O with velocity ~vPO. In the O′ coordinate
system an observer will see velocity ~vPO′. These three velocities are related by

~vPO′ = ~vPO − ~VOO′ 3.22

The above equation is called the Galilean Velocity Transformation. It was named
after Galileo, was was thought to be universally true up until Einstein found that
it was not correct at velocities near the speed of light. However, you can use this
velocity transformation equation quite well at normal speeds. In fact, there are
interesting relative velocity problems such as flying in a cross-wind, or a boat
crossing a river with a current which we can study. You already know how to
solve these problems qualitatively, if not quantitatively, by your own experiences.


