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CHAPTER 2: Reporting and Using Uncertainties
Quoting a result as: Best Estimate ± Uncertainty
In the Archimedes experiment result, we had a table which read

Measurement of Crown Density by Two Experts

Measurement reported Expert A Expert B

Best estimate for ρcrown 15 13.9

Estimated range for ρcrown 13.5 – 16.5 13.7 – 14.1

Instead of giving a table, most experimenters would quote the two results as
follows:

ρA = 15.0± 1.5 gm/cm3

ρB = 13.9± 0.2 gm/cm3

That is, we quote a best (most probable) value of the quantity and then indicate
an error band about this best value with the ± symbol.
You might well ask What is the quantitative meaning of the uncertainty value?
The answer to that question is derived in Chapter 4 of the text. For now we can
simply say that the odds are that if you repeated the measurement many times
then about 2/3 of these repeated measurements would fall within the error band
about the best value you are quoting.

Use of Significant Figures
When quoting the Best Value and the Uncertainty, you have to be careful to
specify the correct number of significant figures for each. If you don’t, then to
the practiced eye your wrong number of significant figures looks plain silly.
For example, in the above quote for ρA, it would be silly to write

ρA = 15.0± 1.5234 gm/cm3

Once you have said that the error is 1.5 gm/cm3, it does not add anything more
to have the extra decimal places. By the same token, it would be ridiculous to
write the best value as

ρA = 15.01± 1.5 gm/cm3

With an error of ±1.5, it does not make any sense to quote the best value to the
hundredths decimal place.
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Reporting Best Values and Their Uncertainties
Use of Significant Figures
So the procedure is to quote your error to one or two significant figures, and then
let that error quote determine how many significant figures are to be attached to
your Best Value quote. For example, if you have an error of ±30 m/s in a speed
measurement, then the following would be a correct quote of the best value if
your average value was 6047.1 m/s

v = 6050± 30 m/s

If your error was ±3 m/s, then you would quote the result as

v = 6047± 3 m/s

Scientific Notation
Of course, with some measurements you will have to use scientific notation.
For example supposed you measured the charge on an electron to be 1.61 ×
10−19 Coulombs with an estimated error of 5.0 × 10−21 Coulombs. The most
meaningful way to write this result is

(1.61± 0.05)× 10−19Coulomb

whereas

1.61× 10−19 ± 5.0× 10−21Coulomb

is very hard to read.
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Comparison of Experiment Values with True Values
Discrepancy Between Measured and Accepted Values
In many undergraduate labs you will be determining physical values whose re-
sults are already more accurately known than you could measurement them with
normal lab apparatus. In such cases we say that there is an accepted value, and
we ignore the error in the accepted value. For these experiments we are inter-
ested in the discrepancy between the accepted value and the value obtained in
the lab experiment.
As a trivial example, you might be measuring the speed of sound in air for which
the accepted value at standard temperature and pressure is

vacc = 331 m/s

Your measurement, with quoted error is given as

vexp = 329± 5 m/s

So there is a discrepancy of 2 m/s between the measured value and the accepted
value. However, this discrepancy is well within the uncertainty of the measure-
ment. So there is no reason to think that the measurement procedure or the
data analysis was done wrong.
On the other hand, it might happen that your measurement with quoted error
is given as

vexp = 345± 3 m/s

In this case the discrepancy of 14 m/s is well outside the uncertainty of the
measurement. This probably indicates that the measurement was done wrong,
or there is a mistake in the analysis, or that there is a sizable systematic error not
yet corrected. Perhaps the measurement was done at a much higher temperature
than the standard temperature. So this means that you have to go back and
discover what could have gone wrong.
You may be tempted to simply increase the size of your quoted error, say to
10 m/s in this example. In that case a discrepancy of 14 m/s would not be
terribly significant. However, you have to be careful about doing this. A correct
error analysis should give you a correct error size, and the lab instructor will have
a pretty good idea of what those error sizes are. More than likely, a discrepancy
significantly outside of your error bounds is probably an indication of bad data
or faulty analysis.



Lecture 2: Reporting, Using, and Calculating Uncertainties 4

Comparison of Two Measured Numbers
Proving a Law in Physics
Often times the lab measurement will not be to determine a particular value, such
as g, but rather to prove a law in physics such as conservation of momentum. For
example, you might be measuring the initial momentum and the final momentum
separately in a collision experiment. These are shown in the following table where
the units are taken to be kg-m/s:

Experiment on Momentum Conservation I

Initial momentum p Final momentum p′

1.49 ±0.04 1.56 ±0.06

2.10 ±0.04 2.12 ±0.06

1.16 ±0.04 1.05 ±0.06

How do well do these data confirm the conservation of momentum law? The
best way to answer that question is to calculate the difference in the final and
initial momentum ∆p = p − p′, and see how close that difference is equal to 0.
This is achieved by adding a third column to the table:

Experiment on Momentum Conservation II

Initial momentum p Final momentum p′ ∆p = p− p′

1.49 ±0.04 1.56 ±0.06 −0.07± 0.07

2.10 ±0.04 2.12 ±0.06 −0.02± 0.07

1.16 ±0.04 1.05 ±0.06 +0.11± 0.07

How did we get the errors assigned to the differences in each row? Your first
thought (which this Chapter 2 agrees with) is to simply add the errors in each
term which would give an error of ±0.10. However, the more mathematically
exact method is to add the errors in quadrature. In other words, if there is a
quantity q which is the difference of two independent quantities x and y each
with their measurement error δx and δy, the the error δq is given by

δq =
√

(δx)2 + (δy)2

So in the above table, the momentum differences are consistent with 0 according
to the errors quoted.
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CHAPTER 2: Fractional Uncertainties
Absolute vs Fractional Uncertainties
We have seen that the correct reporting of a physical measurement requires that
one write the “best” value with a quoted error uncertainty. In general then, we
write

Measured x = xbest ± δx

In this case δx is the absolute uncertainty of the measurement. However, it is
often more clear to write the fractional uncertainty of the measurement instead of
the absolute uncertainty. The idea is that a measurement with a relatively large
fractional uncertainty is not as meaningful as a measurement with a relatively
small fractional uncertainty.
Definition of Fractional Uncertainty
The fractional uncertainty is just the ratio of the absolute uncertainty, δx to the
best value xbest:

Fractional Uncertainty ≡ δx

xbest
In general, the absolute uncertainty δx will be numerically less than the measured
best value xbest. Otherwise the measurement is generally not worth reporting.
The only exception to this rule is in the case where one is trying to make a
so-called “null measurement”. In that case only the absolute uncertainty has
meaning.
For all non-null measurements which have their absolute uncertainties less than
the measured quantity itself, then it is standard practice to quote the fractional
uncertainty as a percentage. For example, suppose one measures a length l as
50 cm with an uncertainty of 1 cm. Then the absolute quote is

l = 50± 1 cm

while the fractional uncertainty is

Fractional Uncertainty =
δl

l
=

1

50
= 0.02

So the result can also be given as

l = 50 cm± 2%
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Multiplying Two Measured Numbers
Another Way of Using the Fractional Uncertainty
The most important application of fractional uncertainties involves their use in
deriving the uncertainty of a measurement involving the product of two other
measurements. For example, linear momentum p is the product of mass m

and velocity v. If we measure the mass to some accuracy and then measure the
velocity to some accuracy, what is the accuracy of our momentum measurement?
Before answering that question, we return to our general result of a measurement
of a quantity x with an uncertainty δx

Measured x = xbest ± δx

This result can also be written as

x = xbest(1±
δx

|xbest|
)

So if the fractional uncertainty is 3% then we can write

x = xbest(1± 0.03)

or we can write
0.97xbest ≤ x ≤ 1.03xbest

The best value of the momentum product mv

We now return to the uncertainty of the momentum product mv. We have a
best value for the mass mbest and a best value for the velocity vbest. So the best
value for the momentum is just the product of the best values for m and v

pbest = mbestvbest

The question in now what do we quote for δp
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The Uncertainty of a Product
Component uncertainties
The product p = mv has two measured components m and v each with their
own uncertainties

m = mbest ± δm =⇒ m = mbest(1±
δm

|mbest|
)

v = vbest ± δv =⇒ v = vbest(1±
δv

|vbest|
)

Now the largest value of p will occur when we take the positive sign of the error
in each of the two components m and v.

Largest p = mbest(1 +
δm

|mbest|
)vbest(1 +

δv

|vbest|
)

Multiplying out all the terms in parenthesis we get

(1 +
δm

|mbest|
)vbest(1 +

δv

|vbest|
= 1 +

δm

|mbest|
+

δv

|vbest|
+

δm

|mbest|
δv

|vbest|

Now we assume that the fractional uncertainties are relatively small such that
the last term above can be ignored. This then gives us the expected largest value
of p

Largest p = mbestvbest(1 +
δm

|mbest|
+

δv

|vbest|
)

Clearly, there will be a similar expression with negative signs for the smalles
value of p. We can now get the value of δp in terms of δm and δv. We first write
the general expression

p = pbest(1±
δp

|pbest|
)

We then equate terms in this equation to the previous equation. This leads us
to the specific result here

δp

|pbest|
=

δm

|mbest|
+

δv

|vbest|

Here we have a very important, but provisional, general rule
The fractional uncertainty of a product is the sum of the fractional uncertainties
of the component terms
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Please note this is a provisional rule. The more exact rule is that the fractional
uncertainty of a product is the square root of the sum of the squares of the
component fractional uncertainties. The exact rules is compatible with the 2/3
estimate of how many independent measurements will find a value consistent
with the value being reported.
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The Uncertainty of a Sum
Provisional Sum Rule
We can go through the same exercise to figure out the uncertainty in a sum.
Suppose we have a quantity q which is the sum of two other quantities x and y

q = x + y

Now x and y have uncertainties δx and δy, respectively.
The provisional rule is that the uncertainty δq of the sum is the sum of the
uncertainties of the component terms:

δq = δx + δy

This shows up on page 23 as Provisional Rule 2.18
The exact rule is that the uncertainty in a sum is the square root of the sum of
the squares of the uncertainties of the component terms.

Provisional Difference Rule
The uncertainty of a difference is computed the same as the uncertainty of a
sum:

q = x− y

Provisional rule for a difference

δq = δx + δy

Again the exact rule is that the uncertainty in a difference is the square root of
the sum of the squares of the uncertainties of the component terms.


