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CHAPTER 2: Fractional Uncertainties
Absolute vs Fractional Uncertainties
We have seen that the correct reporting of a physical measurement requires that
one write the “best” value with a quoted error uncertainty. In general then, we
write

Measured x = xbest ± δx

In this case δx is the absolute uncertainty of the measurement. However, it is
often more clear to write the fractional uncertainty of the measurement instead of
the absolute uncertainty. The idea is that a measurement with a relatively large
fractional uncertainty is not as meaningful as a measurement with a relatively
small fractional uncertainty.
Definition of Fractional Uncertainty
The fractional uncertainty is just the ratio of the absolute uncertainty, δx to the
best value xbest:

Fractional Uncertainty ≡ δx

xbest
In general, the absolute uncertainty δx will be numerically less than the measured
best value xbest. Otherwise the measurement is generally not worth reporting.
The only exception to this rule is in the case where one is trying to make a
so-called “null measurement”. In that case only the absolute uncertainty has
meaning.
For all non-null measurements which have their absolute uncertainties less than
the measured quantity itself, then it is standard practice to quote the fractional
uncertainty as a percentage. For example, suppose one measures a length l as
50 cm with an uncertainty of 1 cm. Then the absolute quote is

l = 50± 1 cm

while the fractional uncertainty is

Fractional Uncertainty =
δl

l
=

1

50
= 0.02

So the result can also be given as

l = 50 cm± 2%
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Propagation of Errors
Introduction to Propagation of Errors
In determining a physical quantity it is only very rarely that we make a direct
experimental measurement on the quantity itself. Much more often it is the
case that we make direct measurements on quantities which are mathematically
related to the unknown physical quantity. Then by a series of either simple or
complicated mathematical steps, we arrive at the unknown quantity of interest.
So we can think of directly measured physical quantities and indirectly measured
physical quantities. The directly measured physical quantities will have errors
associated with them as we discussed in the opening lectures, which errors re-
flect the measurement apparatus or techniques used. The indirect, or calculated
physical quantities will also have errors associated, and these errors will be the
propagated errors from the direct measurement errors. We have already seen in
Chapter 2 the first examples of error propagation involving addition or subtrac-
tion and multiplication or division. The book’s rules are:
In adding or subtracting physical quantities, the absolute measurement errors of
the individual quantities are added to obtain the absolute error in the calculated
quantity.
In multiplying or dividing physical quantities, the fractional measurements er-
rors of the individual quantities are added to obtain the fractional error in the
calculated quantity.
The “professional physicists” rules are much the same except that we add the
squares of the individual errors and take the square roots of that sum.
Uncertainties in Direct Measurements
We have seen that the error quotes for direct measurements are generally asso-
ciated with how well can one read the measurement device. The classic example
is a meter stick calibrated in millimeter gradations where a half millimeter error
quote would be quite reasonable. However, one may have a digital device, such
as a digital stop watch, which is capable of giving readings in the milli-seconds.
You might then be tempted to quote time errors to ±0.001 second. However,
this would probably be a mistake in most introductory mechanics labs. The
actual physical process itself, such as the fall time in a gravity experiment or an
Atwoods machine, is likely to vary by more than a milli-second even under very
controlled conditions. Hence a quote of ±0.05 seconds would be more realistic.
Thus it is important to distinguish between the precision of the measuring device
and the precision associated with the measurement itself.
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Uncertainties in Direct Measurements
Counting Experiments
A very common type of physical measurement is simple a “counting experiment”.
The typical example is the decay of a long-lived (years) radioactive source for
which the emission of particles is completely random over a very short time
interval (say milli-seconds), but has a definite average rate over a longer time
interval (say minutes).
In such experiments, one counts the emitted particles for a fixed time such as
a few minutes and records the number of counts. That number, divided by the
time interval, constitutes the count rate. One may count again for the same
amount of time and find a slightly different number of counts with a slightly
different count rate. Here we see an example of a directly measured physical
quantity (the counts) and a derived physical quantity (the count rate).
The question which arises is what is the error associated with this kind of count-
ing experiment. The answer is remarkably simple. The error associated with a
counting measurement is simply the square root of the number of counts. This
is the prime example of statistical error. Specifically, counting experiments are
part of what is know as Poisson Distribution which is fully discussed in Chapter
11.
Statisical Error in Counting Experiments and Count Rate Errors
To recapitulate the discussion above for counting experiments, if one has an
experiment where N counts are measured, then the uncertainty δN in that
measurement is given by the Poisson Statistics formula:

δN =
√

N

So, to take an easy number, say we measure 100 counts in a 2 minute period.
Then we can say that the error in that measurement is

√
100 = 10, and we can

then quote
N = 100± 10

However, one will typically not quote the actual number of counts, but rather
the rate of counts in a given time period. Let’s give the rate quantity the symbol
R, so obviously in this simple example

R =
N

T
=

100

2
= 50 counts/minute

Now what is the error associated with the rate quantity R?
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Error Propagation Examples
Count Rate Errors and Error Propagation
The answer to the question of the error in a count rate is an example of error
propagation. Here we have a directly measured physical quantity, counts, divided
by a fixed constant, time (2 minutes), in order to obtain a derived quantity. In
such a case, the absolute error in the derived quantity is the absolute error in
the measured quantity divided by the fixed constant.
So in the case at error

R =
N

T
=⇒ δR =

δN

T
=

√
N

T

In the present example, then δR =
√

100/2 = 5 counts/minute. So we would
quote the result as R = 50± 5 counts per minute.
First General Rule for Error Propagation of Calculated Quantities The
book (page 5) gives the first general rule according to the following formula. If
there is a quantity q which is calculated as the product of a constant B and a
measured quantity x

q = Bx

and the measured quantity has an error δx, then the error δq in the calculated
quantity is given as

δq = Bδx

In our count rate example above we actually had B = 1/T and were dividing
by a fixed quantity instead of multiplying. But mathematically, it makes no
difference.
Another way of stating this same rule is that the fractional error in the derived
quantity is the same as the fractional error in the directly measured quantity.
Power Law and an Error Propagation
A second general rule about error propagation applies to a power law depen-
dence. Take for example q = xn where n may or may not be an integer. Then
the error δq is given as

δq

q
= n

δx

x

If n is an integer, you can think of this as adding up n times the fractional error
in x since q is the product of x taken n times.
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Propagation of Errors with One Variable
Arbitrary Function of One Variable
Suppose we have a calculated physical quantity q which depends upon a mea-
sured physical quantity x according to the general function

q = q(x)

In error analysis, we want to know that how much uncertainty δq do we attach
to q when the uncertainty in x is given as δx
The answer to this question comes directly from calculus. You should have
seen in elementary calculus that it is always possible to expand a well-behaved
function about some point in terms of increasing orders of derivatives

q(x) = q(x0) + (x− x0)
dq

dxx=x0

+ (x− x0)
2 d2q

dx2
x=x0

+ . . .

So if we think of δx = x− x0 as the uncertainty about the true value of x, then
the uncertainty δq = q(x)− q(x0), and we have

δq = δx
dq

dxx=x0

+ (δx)2 d2q

dx2
x=x0

+ . . .

Now we make our usual assumption that δx is small (and also that the higher
order derivatives are not large, which means “well-behaved”), and obtaining

δq ≈ δx
dq

dxx=x0

Of course, we only care about the absolute values of all the quantities so it is
fair to write

δq ≈ δx|dq

dx
|

and we are assuming that we are evaluating the derivative at some given mea-
sured point x0.
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Uncertainty for One Variable
Example of Uncertainty for One Variable
We have derived the general rule for a function of one variable that the uncer-
tainty in the calculated variable is given by

δq ≈ δx|dq

dx
|

As an example (page 65 suppose we take x to be the angle θ and q to be the
function cos θ. Then we have the uncertainty in q is given by

q = cos θ =⇒ δq = δθ(
d cos θ

dθ
) = δθ sin θ

where, as usual in calculus, all angular quantities are expressed in radians.
To be specific, supposed we measured θ = 20 ± 3 degrees. Then we have q =
cos 20 = 0.94. As for the error δq in q we evaluate

δq = δθ sin θ = (0.05)(0.34) = 0.02

Again, remember that we have to convert the angular quantity δθ 3 degrees into
radians So the value for q is quoted as

q = 0.94± 0.02

The Power Law Re-Visited
Previously we showed that for power law functions, q = xn then the fractional
uncertainty in q was n times the uncertainty in x

δq

q
= n

δx

x

You can think of this as a product function of x by n times, with all the errors
adding up correlated.
This same result can be derived using our general rule for functions of one
variable. We have

q = xn =⇒ δq = n(δx)xn−1

Now divide both sides by the original expression q = xn

δq

q
=

n(δx)xn−1

xn
= n

δx

x
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Uncertainty with Two Variables
The Pendulum Example
The pendulum experiment is a good example of a calculated quantity, the ac-
celeration due to gravity g, depending upon two measured quantities, a length l

and a time T . As you know

T = 2π

√√√√ l

g

which we can re-write as a calculated g quantity

g =
4π2l

T 2

We assume that we measure l with an uncertainty δl and T with and uncertainty
δT . So, what is the uncertainty in the calculated value of g?
We view this calculated quantity as a product of a constant (4π2) which as no
uncertainty, a linear term l, and a quadratic term T 2. The quantities l and T
are measured independently of one another, and there should be no correlation
in their respective uncertainties. Hence the fractional error in g is obtained by
adding the fractional errors of the two terms in quadrature. The fractional error
in the l term is simply δl/l, and the fractional error in the T 2 term is by the
power rule equal to 2δT/T . We thus obtain

δg

g
=

√√√√(
δl

l
)2 + (2

δT

T
)2

Calculated Pendulum Example
We can now put specific numbers in to show what happens. We take as an
exmaple (page 68) the following measurements and quoted errors

l = 92.95± 0.1 cm

T = 1.936± 0.004 sec

We obtain directly from these numbers that g = 979 cm/s2, and that

δg

g
=

√√√√(
0.1

92.95

2
+ (2

0.004

1.936

2
) = 0.004

=⇒ δg = .004× g = 4 cm/s2

So we make the experimental result as g = 979± 4 cm/s2.
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Uncertainty with Multiple Variables
General Formula for Multiple Variables
The extension of this error analysis to multiple variables is very straightforward.
Suppose we take a quantity q to be a function of several independently measured
variables as follows

q = q(x, . . . , z)

Each of these independently measured variables (x, . . . , z) has its own, indepen-
dent error uncertainty (δx, . . . , δz). Then we can used the calculus of more than
one variable to arrive at the following result

δq ≈
√√√√(

∂q

∂x
δx)2 + . . . + (

∂q

∂z
δz)2

The approximation sign indicates that we are assuming that the individual errors
are relatively small, and that the function itself is equivalently well behaved in
the region where all the physical quantities (x, . . . , z) are being measured.
The partial derivative, ∂q/∂x, means take the derivative of the q function with
respect to x and assume all the other variables are constant. And so on for
∂q/∂y, . . . , ∂q/∂z.
This is a very powerful error analysis formula which will work in all cases: one
variable, two variables, and more than two variables. You should memorize this
formula. Morever, with the help of Mathematica, you can very quickly get the
error uncertainties of even complicated, multi-variable functions. This is because
Mathematica provides a means of evaluation derivatives for you analytically.


