REVIEW: Poisson’s Equation Solution

Poisson’s Equation

Poisson’s equation relates the potential function \(V(x, y, z) \) to the charge density \(\rho(x, y, z) \) enclosed in a particular volume

\[
\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\epsilon_0}
\]

In the MKS units, \(\epsilon = 8.854 \times 10^{-12} \text{ Coulomb}^2/\text{Newton-meter}^2 \). For a point charge \(q \) at the origin, and an infinite volume, then Poisson’s equation has the Coulomb’s law solution in spherical coordinates

\[
V(r) = \frac{q}{4\pi\epsilon_0}
\]

where the radial distance \(r = \sqrt{x^2 + y^2 + z^2} \) in terms of the Cartesian coordinates.

As you might have anticipated, the Poisson equation in finite space can be solved with the relaxation methods that we have used for Laplace’s equation. The only addition is that we add the charge density term to the iteration equation. The result, on page 144, is

\[
V(i, j, k) = \frac{1}{6}[V(i+1, j, k) + V(i-1, j, k) + V(i, j+1, k) + V(i, j-1, k) + \\
V(i, j, k+1) + V(i, j, k-1)] + \frac{\rho(x, y, z)\Delta x^2}{6\epsilon_0}
\]

To simplify matters, the book works in units of charge such that \(\epsilon_0 = 1 \).

The simplest problem is for the point charge such that \(\rho \) is zero everywhere except at the origin. At the origin \(\rho(0,0,0) = q/dx^3 \).

Example

In the last class the assignment was to write a program to solve Poisson’s equation for a point charge by the SOR method using the example in Figure 5.8 of a finite size metal cube. The potential zero on the six walls of the cube, and the charge \(q/\epsilon_0 \) is in the center of the box. You should get results such as shown in Figures 5.9 and 5.10, taking the box’s origin at \((0,0,0)\) and having sizes which are first \(\pm 2 \) units, and then \(\pm 4 \) units. The grid size is 0.2 units.

In class today we will work with the threeDPoisson.cpp program. This program solves the point charge problem with either of the three methods we have learned: 1) Gauss-Jacobi, 2) Gauss-Seidel, or 3) Simultaneous Over-Relaxation (SOR).
Poisson Equation Point Charge Solution

Differential Equation
\[
\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\epsilon_0}
\]

1) Gauss-Jacobi (G-J) algorithm

\[
V_{\text{new}}(i, j, k) = \frac{1}{6} \left[V_{\text{old}}(i + 1, j, k) + V_{\text{old}}(i - 1, j, k) + V_{\text{old}}(i, j + 1, k) + V_{\text{old}}(i, j - 1, k) + V_{\text{old}}(i, j, k + 1) + V_{\text{old}}(i, j, k - 1) \right] + \frac{\rho(x, y, z) \Delta x^2}{6 \epsilon_0}
\]

2) Gauss-Seidel (G-S) algorithm The same iteration equation is used except that as soon as a \(V_{\text{new}}(i, j, k)\) is available it is used in the right hand side of the equation.

3) Simultaneous Over-relaxation There are three steps. First the Gauss-Seidel solution is obtained for all grid points, and we can denote this solution as \(V^{GS}(i, j, k)\). Then a difference array is computed as

\[
\Delta V(i, j, k) = V^{GS}(i, j, k) - V_{\text{old}}(i, j, k)
\]

Lastly, an updated \(V_{\text{new}}(i, j, k)\) array is computed as

\[
V_{\text{new}}(i, j, k) = \alpha \Delta V(i, j, k) + V_{\text{old}}(i, j, k)
\]

The \(\alpha\) coefficient varies between 1 and 2. For a two-dimensional square array (which is not the Example 5.8) the best \(\alpha\) coefficient can be proved to be

\[
\alpha \approx \frac{2}{1 + \pi/L}
\]

where \(L\) is the grid dimension.

threeDPoisson Program

The threeDPoissonProgram has the capability to investigate all three solutions methods, according to the input command used. The program does this by making use of command line options, which is a feature of C/C++ as well as the Perl scripting language. In C/C++ the command line options feature is of the form

threeDPoisson [choice] [alphaCoeff]

where the \textit{choice} value can be 1, 2, or 3 for the G-J, G-S, or SOR methods. If the SOR method is chosen, then a specific value of the \(\alpha\) coefficient can be used. An important programming feature is that there are default values taken if no input option is given. So if no \textit{choice} value is specified, then the G-J method is used. If no \textit{alphaCoeff} value is specified, then a default value of 1.67 is used. We will use this program in class to explore the solution of the Poisson equation for the point charge in a box problem.
REVIEW: Numerical Integration

Biot-Savart Law
The magnetic field \vec{B} produced by a current carrying straight wire can be computed from the Biot-Savart law which gives the differential element $d\vec{B}$ in terms of the radial displacement \vec{r} from the wire, and the current element Idz in the wire

$$d\vec{B} = \frac{\mu_0 I dz \times \vec{r}}{r^3}$$

As you can see, this equation requires that a vector cross-product be computed. For a typical case, as in Figure 5.11 on page 149, the magnitude dB can be written as

$$dB = \frac{\mu_0 I dz \sin \theta}{r^2}$$

The wire is in the z direction, and we are computing the magnetic field at a fixed distance x away from the mid-point $z = 0$ of the wire, for which $r^2 = x^2 + z^2$, and $\sin \theta = x/r$. The integration $B = \int dB$ can be carried out as a discrete sum

$$B \approx \frac{\mu_0 I}{4\pi} \sum_{i=1}^{n} \left(\frac{x \Delta z}{(z_i + x^2)^{3/2}} \right)$$

In the above one divides up the length of the wire into n intervals with the appropriate z_i values, and then makes the sum.

Simpson’s Rule
A more accurate approach than a simple sum at equidistant intervals is to use Simpson’s rule. Simpson’s rule is based on a parabolic approximation to the integrand $f(y)$ over a small interval. The final Simpson’s Rule result (page 502) for n intervals is

$$\int_{a}^{b} f(y) \, dy \approx \frac{\Delta y}{3} [f(a) + 4f(y_1) + 2f(y_2) + 4f(y_3) + \ldots + 2f(y_{n-2}) + 4f(y_{n-1}) + f(b)]$$

In the above formula n needs to be an even integer, that is, the coefficient of the y_i terms where i is odd is 4, and the coefficient of the y_i terms where i is even is 2. The individual $y_i = a + i\Delta y$, from which $\Delta y = (b - a)/n$
Numerical Integration for Biot-Savart Law

Example of a current carrying wire

The example is taken from exercise 5.11, comparing the simplest integration formula (Equation 5.25) with that of Simpson’s rule for the same grid size Δz. Do two different grid sizes. For your calculations take a thin wire 1 meter long, with a current of 10 milli-amperes flowing (to keep it somewhat realistic). Calculate the magnetic field at $r = 5$ and $r = 15$ cm, requiring a convergence criterion between the two grid size of 1% in the result.

Compare your results to the infinite wire length Ampere’s Law result

$$B(r) = \frac{\mu_0 I}{2\pi r}$$

where r is the radial distance away from the wire, and $\mu_0 = 4\pi \times 10^{-7}$ Tesla-meter/Ampere.

For this class, we will explore the use of the two programs `biotSavartSimple.cpp` and `biotSavart-Simpsons.cpp` to see how well our numerical and physics expectations are confirmed. Unlike the threeD Poisson.cpp example, these two programs are entirely hard-coded, meaning that there are not input options which can change the parameters of the calculations. Instead, one has to recompile anytime that there is a change. On the other hand, the programs are very simple so recompilation does not take long.
Waves on a String

Description of Wave Motion
We are all familiar with the motion of a transverse wave pulse on a taut string, or a slinky toy. This is motion in two dimensions \((x, y)\) where the \(x\) direction is along the string. The \(y\) direction is transverse to the string and measures the amplitude of the wave. The motion is also time dependent. Thus the solution is of the form \(y(x, t)\).

Transverse waves on a string have a differential equation of motion as follows:
\[
\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}
\]
where \(c\) is a speed parameter. For a string under tension \(T\) and having a mass per unit length value \(\mu\) the speed is given by \(c = \sqrt{T/\mu}\).

At first sight, this equation seems to resemble the Laplace or Poisson equations which we solved using the relaxation method. However, that method is not applicable to the wave equation because we are seeking a time-dependent, not a stationary solution. However, as with the Laplace equation, we will consider the solution \(y(x, t)\) to be a set of grid points \(y(i, n)\). Similarly, we will impose a boundary condition by keeping the ends of the string fixed. Finally, we will need, as in any motion problem, and initial \((t = 0)\) condition describing the string.

Numerical Solution to the Wave Equation
Just as in the Laplace equation, we can write a finite difference version of the wave equation which will lead to an integration equation for our numerical solution. In terms of the grid points approximation \(y(i, n)\), this differential equation looks like
\[
\frac{y(i, n + 1) + y(i, n - 1) - 2y(i, n)}{(\Delta t)^2} \approx c^2 \frac{y(i + 1, n) + y(i - 1, n) - 2y(i, n)}{(\Delta t)^2}
\]
We can then write the iteration solution as
\[
y(i, n + 1) = 2 \left[1 - r^2 \right] y(i, n) - y(i, n - 1) + r^2 [y(i + 1, n) + y(i - 1, n)]
\]
where \(r \equiv \frac{c\Delta t}{\Delta x}\)

In the iteration on the left side we have the new time value \(t = (n + 1)\Delta t\), while on the right side we have the two previous time values \(t = n\Delta t\) and \(t = (n - 1)\Delta t\). In order to start the iteration we must specified the condition of the string at all points for two time intervals. The usual approach is to say that the string has a specific say Gaussian pulse form for the two time intervals before the calculation starts.
\[
y_0(x) = \exp \left[-k(x - x_0)^2\right]
\]
The \(x_0\) parameter gives the center of the Gaussian pulse while the \(k\) parameter gives the width of the pulse. As stated before, we need to impose boundary conditions on the string at the two ends. The simplest first choice is to have the ends fixed: \(y(0, n) = y(M, n)\) for all times \(n\), and where the length of the string \(L = M\Delta x\).
Numerical Solution to Waves on a String

Example 6.1 in Figure 6.2
The pseudo-code for solving the wave equation is given in Example 6.1 on page 159, with the results shown in Figure 6.2. A C/C++ implementation of that pseudo-code is the fixedString.cpp program which we will study in this class. The most complicated part of this program is producing the cascade of snapshots of the string at different times, which can eventually be animated. We will explore the different possibilities of the r parameter as discussed on page 161.