Name:

- This is a **closed book** test. You may use a 1 page, handwritten set of notes but no texts.
- Put a box around your answers, so they are visible.
- You may write on the **front and back** of each sheet, but please keep all your work in one place.
- Show all your work. Partial credit will be given. Answers that appear out of thin air will not receive credit.
- This test consists of 3 questions and 7 pages (including this one).

<table>
<thead>
<tr>
<th></th>
<th>/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>/30</td>
</tr>
</tbody>
</table>
1. Consider a thin uniform ring of mass M and radius R.
 a) Find the gravitational potential Φ at a point on the central axis of the ring. The point is a height z above the center of the ring.
 b) Find the potential energy of a test mass m at this point.
 c) Find the force (magnitude and direction) of the ring on the test mass m in part (b). You should be able to use your answer(s) from above.
Extra space to work problem 1.
2. A simple pendulum is shown. The string has length L and the weight has mass m.

a) Find the tension in the string as a function of θ and $\dot{\theta}$ (and other constants such as m and/or g). Use the Lagrange multiplier method.

b) Use Newton’s Laws and a Free-Body Diagram to find the answer to part (a).
Extra space to work problem 2.
3. A uniform disk of mass M and radius R rotates freely about a central axle. One end of a spring of constant k is attached to the axle; the other end of the spring is attached to a wall. The disk rolls without slipping. The moment of inertia of the disk is $\frac{1}{2} MR^2$.

a) Use the Lagrangian to find the equation(s) of motion of the system. You do not have to solve these equation(s).

b) What is the angular frequency ω of oscillations of the system?
Extra space to work problem 3.