
Kater’s Pendulum

Medford Webster, Bob Patchin, Michael Turner, John Wikswo, and Jim Waters

October 1988 - Last Revised September 12, 2003

1 Historical Background

An accurate value of g, the acceleration due to gravity, is needed to calculate an object’s motion in
the earth’s gravitational field or to measure the mass of the earth using the universal gravitational
constant, G, such as in Cavendish’s original experiment described in the Gravitational Torsion Balance
experiment. Local variations in g are important for the study of geological formations, and thus for
locating mineral deposits. Theoretically, one could determine g from the measurement of the period of
a simple pendulum. In practice, however, it is physically impossible to make a point-mass pendulum
with a weightless support. In the early nineteenth century, Henry Kater1 devised another method, by
constructing a compound pendulum, which he oscillated about a knife-edge, then turned upside down
and oscillated about a knife-edge on the other side of the center of mass (cms). (See Fig 1.) If the two
periods are made equal by adjusting the weights on the pendulum, g can be determined from only the
period and the distance between the two knife edges. In essence, use of the parallel axis theorem for the
moment of inertia of a rigid body allows us to avoid approximating a point mass on a massless string.

Kater used this device to measure the acceleration of gravity at various locations in England. He
also determined the length of what was called the second’s pendulum, i.e., a pendulum whose half-period
is one second. One can show that this length is nearly one meter, and this length of the one second
pendulum was proposed as the standard for the meter in the 1790s, but was not adopted.

2 Kater’s Pendulum

The torque, τ , that gravity exerts on a pendulum is given by the expression

τ = −Mgd sin θ, (1)

where M is the mass of the object, θ is the deviation from the vertical, and d is the distance from the
center of mass to the point about which it is oscillated. The negative sign comes from the fact that in
this case gravity is a restoring force. The torque is also equal to the angular acceleration, α, times the
moment of inertia about the point of oscillation, I0; τ = I0α. Since the angular acceleration is equal to
the second derivative of the angular position,

d2θ/dt2 + (Mgd/I0) sin θ = 0. (2)

This differential equation can be solved in the small angle approximation (sin θ = θ)

d2θ/dt2 + (Mgd/I0) θ = 0 (3)

1Henry Kater, 1777-1825, English army captain; participated in the great triangulation of India and has a peninsula on

the east coast of Baffin Island named for him.
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and has the solution

θ = θmax sin

√

Mgd

I0
t. (4)

The period for an oscillator satisfying this equation is

T = 2π
√

I0/Mgd (5)

Comparing this period to that of a simple pendulum, T = 2π
√

l/g, one finds that a physical pendulum

Figure 1: Diagram of the Kater pendulum. The symbols L1 and L2 on the figure are ℓ1 and ℓ2 in the
text. L = ℓ1 + ℓ2 is the distance between fulcrum points. The distances of most of the weights from each
fulcrum are adjustable. Note that W2 is between W4 and W3, rather than as shown.

has the same period as a simple pendulum of length l = I0/Md. This is called the reduced length of the
physical pendulum.

From the parallel axis theorem, we know that the moment of inertia of an object about an axis parallel
to an axis through its center of mass is related to the moment of inertia about the center of mass, Ic, by

I0 = Ic + MR2, (6)
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where R is the distance from the axis of I0 to the center of mass. Designating I1 as the moment of inertia
about P1 and I2 as the moment of inertia about P2, one can substitute Eq 6 into Eq 5 to obtain

T1 = 2π
√

{(Ic + Mℓ2
1)/Mgℓ1} (7)

and

T2 = 2π
√

{(Ic + Mℓ2
2)/Mgℓ2} (8)

If the weights on the pendulum are adjusted so that T1 = T2, then

(Ic + Mℓ2
1)ℓ2 = (Ic + Mℓ2

2)ℓ1. (9)

and
Ic(ℓ2 − ℓ1) = Mℓ1ℓ2(ℓ2 − ℓ1), (10)

or
Ic = Mℓ1ℓ2, (11)

provided that ℓ1 differs significantly from ℓ2, that is, that the pendulum is quite asymmetric. If Eq 11 is
substituted into Eq 7 or Eq 8, the result is

T = 2π
√

[(ℓ1 + ℓ2)/g] = 2π
√

L/g (12)

Note that ℓ1 and ℓ2 individually have disappeared and only the sum occurs in the equation. We
therefore conjecture that if the masses are adjusted so that the two periods are very nearly the same,
then g will be determined primarily by the sum of the periods and the distance between the two knife-
edges with weak dependence on the differences in the lengths and periods. If this conjecture can be proved
correct a much easier way to measure g will be apparent because L = l1 + l2, the distance between the
two knife-edges, can be measured to a fraction of a millimeter, while the measurement of the individual
ℓs depends on locating the center of gravity. It is difficult to locate the center of gravity more accurately
than a few millimeters. Thus we are motivated to manipulate Eqs. 7 and 8 to emphasize terms in the
sum and difference of T1 and T2 in order to address the practical case in which the periods are nearly,
but not exactly, equal,

g =
8π2

T 2

1
+T 2

2

l1+l2
+

T 2

1
−T 2

2

l1−l2

≈
4π2L

(

(T1+T2)
2

)2

[

1 + 2

(

T1 − T2

T1 + T2

L

L − 2l1

)]

, (13)

where the first expression is exact and the second is obtained by changing to variables ∆T = T1 − T2

and T = (T1 + T2)/2 and keeping up to linear terms in ∆T. This second form is probably due to Bessel
and is convenient for showing that the expression is insensitive to the location of the center of mass for
approximately equal periods. The second expression is an adequate approximation if T1−T2 ≪ T1 + T2

and the pendulum is sufficiently asymmetric that ℓ1 differs appreciably from L/2. Note that the term
which depends on ℓ1 is needed only as a small correction and thus need not to be measured with great
precision.

For error analysis it is essential to use the measured variables: T1, T2, L, and ℓ1. Note that ℓ2 is not
measured but is L - ℓ1. Returning to the first form of Eq. 13 and eliminating ℓ2 the derivatives needed
for error analysis are:

∂g

∂T1
=

g2

8π2

4T1ℓ1

L(L − 2ℓ1)
∼ 2.1 (14)

∂g

∂T2
= −

g2

8π2

4(L − ℓ1)T2

L(L − 2ℓ1)
∼ −12.
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∂g

∂L
=

g2

8π2

(

T2
1 + T2

2

L2
−

T2
1 − T2

2

(L − 2ℓ1)2

)

∼ 9.8

∂g

∂ℓ1
=

g2

8π2

2(T2
1 − T2

2)

(L − 2ℓ1)2
∼ 20. (T1 − T2)

Approximate values T1 = T2 = 2, L = 1, and ℓ1 = 0.15 have been used except in the difference between
the two periods.

The theory of Kater’s Pendulum was worked out in 1826 by Bessel.2 The study of the pendulum
without the small angle approximation requires elliptic integrals. It is covered in most intermediate
mechanics texts and shows that

Tα = T0

(

1 + (1
2 )2 sin2(α/2) + (1·3

2·4 )2 sin4(α/2) + · · ·
)

(15)

for oscillation with amplitude α radians and a period T(0). Kater’s pendulum is about 1 meter long so
an oscillation with amplitude 1 cm is 10−2 radians and a this equation shows that is a 6 in a million
correction. ((1/2)sin(10−2/2 radians) = 10−2/4 and the square is 6/106)

3 Apparatus

Reversible Kater pendulum and wall mount
Pasco ME 9206A photogate timer
balance block

4 Procedure

1. Hang the pendulum from the knife-edge K1. Be careful to position the knife-edges on the pendulum
on the steel insert in the supporting brass block. Be gentle when lowering the pendulum onto its
support, or you may damage the knife-edges. The L discussed above is really the distance between
the effective rotation points, but the measurement of L is the distance between the knife edges. If
a knife edge is dull, the rotation point is below the rounded edge. Then a) the measurement of L is
wrong and b) the motion of the pendulum is a complicated combination of rotation and translation
back and forth.

2. Turn on the counter/timer. Set the switch to “pend”. In this mode the timer will stop or start
every other interruption, so that it measures a period, not a half period. Press the reset button.
The display should show all zeroes. Press the start button.

3. Clamp the photogate in the mount at the bottom of the Kater Pendulum support with the photogate
positioned as an inverted U, so that the end of the pendulum will interrupt the infrared beam. Be
careful that the photogate is not hit by the pendulum. Since the height of the bottom of the
pendulum bar depends upon which knife edge is used, you will have to adjust the height of the
photogate every time you flip the bar, and you need to be sure that the bar will not hit the gate
before you flip the pendulum.

4. Start the pendulum swinging. Measuring the period accurately requires that the edge of the bar
move quickly across the infrared beam and high speed means large amplitude oscillations. But the
small angle approximation breaks down for large oscillations and the period must be calculated

2Friedrich Wilhelm Bessel, 1784-1846, Prussian astronomer. Worked out, inter alia, the theory of instrumental errors.
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from Eq. 15. Use the leading term of Eq. 15 to see how large an oscillation is permitted while
keeping this correction less than 1/10,000. That is, find the amplitude which makes the leading
term 1/10,000. Start the pendulum swinging with an acceptable amplitude and time the period
of the oscillation, T1. The counter/timer should begin counting and then pause while displaying
a period of about 2 s. After this pause, the counting should resume, to pause again at about 4 s.
Press the reset button to clear the display and start timing again. Record the period T1.

5. First lower the photogate all the way down and then turn the pendulum upside down and time the
period of oscillation about the knife-edge K2.

6. The two period measurements probably differ by an unacceptable amount and the next step is to
adjust the position of W2 to make the two periods equal. This should be done in a systematic
way using linear interpolation or extrapolation, or Newton’s method for solving equations. The
steps and estimates should be recorded in your data sheet. Measure the distance from W2 to some
reference on the bar, loosen the screw on W2 and move it a couple of cm. Measure both periods.
How much has the difference in the periods changed?. Assume the change in period difference is
proportional to the amount W2 was moved and estimate how much W2 should be moved to make
the difference zero. Record in data sheet. Move W2 and iterate until the difference is acceptably
small. Use either the second form of Eq. 13 or the error comparisons of Eq. 14 to decide what
acceptably small means and explain on your data sheet.

7. Without moving the weights, time nine swings about each knife-edge. Record these values of T1

and T2 and the amplitude of the oscillation.

8. Repeat the last step a few times about each knife-edge to gather more data for statistical use. Note
that the readout goes up to only 20 s, so accumulating for more than nine swings overflows the
readout.

9. Locate the center of gravity by balancing the pendulum horizontally across the balance block, and
measure either l1. Estimate the error in this measurement.

10. Check the scale factor written on your timer. If it is different from unity, correct the two times you
have measured with it.

11. Calculate the acceleration of gravity using your choice of the two alternatives shown in Eq. 13. Use
the value L = ℓ1 + ℓ2 = 1.000903± 0.000012 m. Using your estimates of the other uncertainties and
the derivatives given in Eq. 14, calculate the error on g. Your write up should show the contribution
of each of the four terms individually. Treat the uncertainties in all measurements as uncorrelated.

5 Results

1. What are the dominant sources of uncertainty in your calculations of g and the corrections to it?

2. The stated value of g in Nashville is 9.79822 m/s2. How does this compare with your average value
of g? Is the difference within the uncertainty of your value?

3. How is the accuracy of this experiment dependent on the size of the pendulum? What would you
have to do to get results of the same quality for a pendulum 1/10 the length?

4. Calculate one of the four partial derivatives needed for the error analysis.
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7 Addendum

Addendum to Kater’s Pendulum Write Up

Med Webster
September 12, 2003

This experiment measures g, the acceleration of gravity at this location. Maintaining sharpness of the
knife-edges is essential if the pendulum is to behave as a simple rotational pendulum without additional
complication due to a small translation if the edges are not sharp. The mount has steel knife-edges resting
on a steel insert in the brass support plate. All measurements should be made with the knife-edge on
the steel insert. Be careful not to drop the pendulum when you hang it on the knife-edges. The brass
support plate pushes to the left and then swings out to permit removing the pendulum from the mount.
Climb up on a ladder or stool so that you can see how the support is constructed before you attempt
to remove the pendulum for adjustment or measurement. You will need to move the white metal weight
along the bar to adjust the periods, but you should not move any of the other weights on the bar.

The obvious point of this experiment is to measure g but the more significant purpose as a teaching
laboratory is to demonstrate that precise measurements usually involve a strategy which requires one to
measure precisely only the things that can be well measured and avoids the requirement of high precision
for difficult measurements. Error analysis plays a double role in physics: it enables us to assign an error
after we have done a measurement and it also enables us to choose measurement strategies which will
give better errors.

In this experiment the distance from each knife-edge to the center of gravity of the pendulum is
needed, but by making the two periods nearly equal and measuring them, the determination of g depends
sensitively on only the sum of the distances and very weakly on the difference. The distance between
the knife-edges is readily measured to better than 0.001 inch or 0.03 mm but the location of the cms is
difficult to determine more accurately than a few millimeters, a factor of 100. The error analysis is rarely
done satisfactorily in other lab writeups I have seen. It is moderately complicated and I admit that I
got a few surprises when I did it. I propose to emphasize it more and to provide more assistance. In
addition, after doing this analysis carefully, I think it is necessary to reduce the expectation from 1 part
in 10000 to 5 in 10000.

8 Comments on History and Calibrations:

According to the note on the support board, this Kater’s Pendulum is the one purchased by Chancellor
Garland in 1875 as part of the original acquisition of equipment for the science departments at Vanderbilt.
It is Item 224 described on p. 166 The Garland Collection of Classical Physics Apparatus at Vanderbilt

University by Robert T. Lagemann and published in 1983 by Folio Publishers. It is identified by the
makers mark on the long bar of the pendulum: “Deleuil à Paris.” in script. Near the end of the fall
02 semester the pendulum apparently was damaged. One knife edge was twisted enough so that the
pendulum hung on only one side.

Bob Patchin removed (they were held in by friction or force fit in mechanics parlance) the knife edges
and ground then. He put them back and dented (“corked” to a machinist) the iron of the bar so that they
are as accurately perpendicular to the bar as he could make them. Webster and Patchin then measured
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the distance between knife edges on both sides of the bar: 39.4055 and 39.4058 inches where the last digit
is uncertain by at least 3 (I used .0005 inches below). Averaging and converting to meters gives 1.000903
± 0.000012 m. Carlton 1983 got 39.403 inches; Webster and Wikswo 1990 got 39.401 ± 0.001 inches =
1.00079 ± 0.00003 m. Since the knife edges were reset, it is not surprising that the distance has increased
a couple thousandths of an inch.

We are pushing the accuracy of the calibration of the Pasco timers. I bought the timer in 2001 and
the catalog said 0.01 % of reading. The literature distributed with the instrument said 1 %. I think it
would be hard to buy a crystal oscillator as bad as 1 % today and believe the catalog is correct. (A $15
watch from Radio Shack or Walgreens is good to a couple of minutes per year, about 0.001 %. This timer
cost $300; would Pasco put a worse time reference in a $300 photogate than is used in a $15 watch?) I
(Webster) called Pasco and their technical adviser has promised to get back to me when he understands
the discrepancy between the catalog and the literature distributed with the hardware. In the meantime
I have checked the calibration of the oscillator in each timer and put the correction factor on each unit.
I used the frequency counter we use with the oscilloscope and electrical oscillation experiments. That
counter agrees to better accuracy than is needed here with a pulser Will Johns bought recently, so I
believe we are limited by readout significance rather than by internal errors.

A final plea: We admit that this is only a convention and an unwarranted infringement of your freedom
to name things as you please, but we do request that you use the subscript 1 for lengths and periods
relating to the knife-edge near the disk. On the other hand, we insist that you make your arbitrary choice
of naming very clear if you refuse to follow our arbitrary choice.
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