Physics 116b Test 1 September 21, 2004

Name: Test A Seat:

This is a 50 minute, closed book examination. Put answers in the boxes provided (if any). If numerical answers are needed, you must include units. Any work needed to justify the answer must be shown in the space provided, or as indicated on a separate piece of paper or elsewhere on the test. A correct answer without the necessary justifying work may not receive any credit. You may tear the formula sheet off the back of the exam.

Total points for each problem will appear in the table below and in () beside each problem number. Do what is easiest first. AVOID glancing at anyone else’s paper during the exam. No means of communication between other students or outside parties is allowed. The honor code is in effect.

You must do all the problems on this test.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Max Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Short Answer</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Capacitors</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E & V</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>
1) Short Answer (17 points)(Show Your Work!)

a) If a 0.07 kg particle with charge 2.1 C is placed in an electric field,
E=2.1 (N/C) and then released, how fast is the particle moving after a
time t = 2.1 sec? (at t=0, the particle is at rest)

\[
v = at \quad a = \frac{F}{m} = \frac{qE}{m} \quad \text{in m/s}^2
\]

\[
v = \frac{qE}{m} = \frac{(2.1C)(2.1N/C)}{0.07kg} = 132.3 \text{ m/s}
\]

b) What is the Force/(unit length) on a infinitely long wire with linear
charge density -1.4 mC/m if it is 0.9 meters away and parallel to an
infinite long wire with linear charge density -1.4 mC/m?

Is this force attractive or repulsive with respect to,
the other wire? (3) repulsive (like charges!)

\[
F = qE \quad \frac{F}{\lambda} = \frac{qE}{\lambda} = \lambda E_z
\]

\[
E_z = \frac{\lambda_2}{2\pi\epsilon_0} \quad F = \left(\frac{\lambda_1}{\lambda_2} - 2k\right)\frac{2(1.4 \times 10^{-3} \text{C/m})}{\sqrt{0.9 \text{m}}} = 3920 \text{N/m}
\]

c) A conducting spherical shell of inner radius R1 and outer radius R2
has a charge of -2Q placed at its center and a net charge of -3Q
placed on it (that is, the sum of the inner surface charge and the outer
surface charge is -3Q). What is the surface charge density on the inner
surface of the conducting shell at R1? Explain your reasoning.
(Hint: Remember what E is inside a conductor, and that E is a result of
total enclosed charge.)

\[
\sigma \text{ at } R1 = \frac{+2Q}{4\pi(R1)^2}
\]

\[
\sigma = \frac{Q}{A} = \frac{+2Q}{4\pi(R1)^2}
\]
2) Capacitors (Show Your Work!)

a) Calculate the equivalent capacitance between points A and B assuming that all the capacitors are initially uncharged. Now, if a 10.0 V battery is used between points A and B to charge the capacitors up, what is the charge on the 3.0 pF capacitor after it is charged up?

\[C_{AB} = 5.56 \, \text{pF} \] \hspace{1cm} (5)
\[Q \text{ (on 3pF)} = 6.66 \, \text{pC} \] \hspace{1cm} (5)

\[\frac{1}{C_{CD}} = \frac{1}{4 \, \text{pF}} + \frac{1}{4 \, \text{pF}} + \frac{1}{7 \, \text{pF}} \]
\[C_{CD} = 1.556 \, \text{pF} \]

\[C_{AB} = 4.00 \, \text{pF} + 1.556 \, \text{pF} \]

\[V_{\text{across 3pF}} = \frac{15.56 \, \text{pC}}{7 \, \text{pF}} = 2.22 \, \text{V} \]

\[Q_{\text{on 3pF}} = 3 \, \text{pF} \times 2.22 \, \text{V} = 6.66 \, \text{pC} \]

check:
\[Q_{\text{on 4pF}} = 8.88 \, \text{pC} \]
\[\frac{15.54 \, \text{pC}}{15.56 \, \text{pF}} \]

b) Now, the battery is removed! But the charge remains on the capacitors. If an uncharged 6.0 pF capacitor is now hooked up between points A and B, what is the charge on the 3.0 pF capacitor at electrostatic equilibrium?

like putting on a new battery

notice \(V_{3 \, \text{pF}} \approx 10 \, \text{V} \) so just need new \(V_{\text{AB}} \)

before \[Q_{\text{total}} = (10 \, \text{V} \times 4 \, \text{pF}) + 10 \, \text{V} \times (1.556 \, \text{pF}) = 55.56 \, \text{pC} \]

\[Q_{\text{before}} = Q_{\text{after}} \]

\[Q_{\text{after}} = V_{\text{new}} \times (6.0 \, \text{pF} + 5.56 \, \text{pF}) \]
\[V_{\text{new}} = \frac{55.56 \, \text{pC}}{11.556 \, \text{pF}} \]
\[= 4.8 \, \text{V} \]

\[\frac{Q_{\text{3pF after}}}{Q_{\text{3pF before}}} = \frac{V_{\text{AB}} \times Q_{\text{3pF after}}}{V_{\text{AB}} \times Q_{\text{3pF before}}} \]
\[Q_{\text{3pF after}} = 6.66 \, \text{pC} \times \left(\frac{4.8 \, \text{V}}{10.0 \, \text{V}}\right) = 3.2 \, \text{pC} \]
3) Force and Potential (20 points Show Your Work!)

3 charged, conducting spheres are arrayed at the corner of an equilateral triangle as shown below:

The charge on each is:
Q1 = -2.0 nC
Q2 = 4.0 nC
Q3 = 3.0 nC

For 1 nC:
\[|E| = \frac{k Q}{r^2} \]
\[= \frac{9 \times 10^9 \text{ Nm}^2 \text{C}^{-2}}{(1.15 \text{ m})^2} \]
\[= 9.13 \text{ N/C} \]

What is the Electric Field at point P at the center of the triangle due to the three charges?
\[E_x = -2 \times 3.6 \text{ N/C} \]
\[E_y = 29.1 \text{ N/C} \]

What is the Electric potential at a point P? How much work would have to be done to bring in a charge of 3.0 nC from infinity to point P?
\[V = \frac{K Q}{r} \]
\[V_{at \ P} = 39.13 \text{ V} \]
\[\text{Work} = 1.17 \times 10^{-7} \text{ J} \]
Physics 116b Test 1 September 21, 2004

Name: Test B Seat: _____

This is a 50 minute, closed book examination. Put answers in the boxes provided (if any). If numerical answers are needed, you must include units. Any work needed to justify the answer must be shown in the space provided, or as indicated on a separate piece of paper or elsewhere on the test. A correct answer without the necessary justifying work may not receive any credit. You may tear the formula sheet off the back of the exam.

Total points for each problem will appear in the table below and in () beside each problem number. Do what is easiest first. AVOID glancing at anyone else's paper during the exam. No means of communication between other students or outside parties is allowed. The honor code is in effect.

You must do all the problems on this test.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Max Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Short Answer</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Capacitors</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E & V</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>
1) Short Answer (17 points) (Show Your Work!)

a) If a 0.02 kg particle with charge 2.4 C is placed in an electric field, E=2.6 (N/C) and then released, how fast is the particle moving after a time t = 1.9 sec? (at t=0, the particle is at rest)

\[v = \frac{2.4 \times 2.6 \times 1.9}{0.02} \text{ m/s} \]

For all the work

b) What is the Force/(unit length) on a infinitely long wire with linear charge density +1.2 mC/m if it is 0.5 meters away and parallel to an infinitely long wire with linear charge density -1.2 mC/m?

Is this force attractive or repulsive with respect to the other wire? (3) Opposite a attract

\[F = \frac{1.2 \times 10^{-3} \text{ C/m}^2}{0.5 \text{ m}} \times 9 \times 10^9 \text{ N/m}^2 \]

(5)

\[F/\text{length} = 518.4 \text{ N/m} \]

c) A conducting spherical shell of inner radius R1 and outer radius R2 has a charge of +2Q placed at its center and a net charge of -3Q placed on it (that is, the sum of the inner surface charge and the outer surface charge is -3Q). What is the surface charge density on the inner surface of the conducting shell at R1? Explain your reasoning.

(Hint: Remember what E is inside a conductor, and that E is a result of total enclosed charge.)

\[\sigma \text{ at } R1 = \frac{-2Q}{4 \pi (R1)^2} \]
2) Capacitors (Show Your Work!)

a) Calculate the equivalent capacitance between points A and B assuming that all the capacitors are initially uncharged. Now, if a 5.0 V battery is used between points A and B to charge the capacitors up, what is the charge on the 3.0 pF capacitor after it is charged up?

\[
C_{AB} = 2.77 \text{ pF} \quad (5)
\]
\[
Q (\text{on 3pF}) = 4.62 \text{ pC} \quad (5)
\]

\[
\frac{13.85 \text{ pC}}{9 \text{ pF}} = 1.54 \text{ V}
\]

\[
\frac{9 \text{ pF}}{2.77 \text{ pF}, Q_{AB} = 5 \text{ V} (2.77 \text{ pF})} = 13.85 \text{ pC} = Q_{\text{on 9 pF}}
\]

b) Now, the battery is removed, but the charge remains on the capacitors. If an uncharged 5.0 pF capacitor is now hooked up between points A and B, what is the charge on the 3.0 pF capacitor at electrostatic equilibrium?

\[
Q_{\text{after}} = Q_{\text{before}} = 27.7 \text{ pC}
\]

but now

\[
\frac{Q_{\text{after}}}{7.77 \text{ pF}} = \frac{13.85 \text{ pC}}{7.77 \text{ pF}} = 1.78 \text{ V}
\]

\[
\text{note } Q_{3\text{pF}} < V_{AB} \quad 4.62 \text{ pF} \cdot \frac{1.78 \text{ V}}{5 \text{ V}} = 1.64 \text{ pC}
\]
3) Force and Potential (20 points Show Your Work!)

3 charged, conducting spheres are arrayed at the corner of an equilateral triangle as shown below:

The charge on each is:
Q1 = -5.0 nC
Q2 = -2.0 nC
Q3 = 3.0 nC

The Electric Field at point P at the center of the triangle due to the three charges is:

\[E_1 = 6.746 \frac{N}{C} \left(-i + j \right) \]
\[E_2 = 6.746 \frac{N}{C} \left(-\cos 30^\circ i - \sin 30^\circ j \right) \]
\[E_3 = 6.746 \frac{N}{C} \left(-\cos 30^\circ i + \sin 30^\circ j \right) \]

The total electric field is:
\[6.746 \frac{N}{C} \left(-1.73 - 2.6i + 5 - 1 + 1.5j \right) \]

What is the Electric potential at a point P? How much work would have to be done to bring in a charge of +5.0 nC from infinity to point P?

\[V = \frac{(9 \times 10^{-9} \frac{Nm^2}{C^2})}{1.155m} \left(-5nC + 3nC - 2nC \right) \]

\[V = -31.2 \frac{N}{m} \]

\[U@\infty = 0 \]
\[U@P = qV = -156 \text{J} \]

U is lower, E did the work
Physics 116b Test 1 September 21, 2004

Name: _Test C_ Seat: _____

This is a 50 minute, closed book examination. Put answers in the boxes provided (if any). If numerical answers are needed, you must include units. Any work needed to justify the answer must be shown in the space provided, or as indicated on a separate piece of paper or elsewhere on the test. **A correct answer without the necessary justifying work may not receive any credit.** You may tear the formula sheet off the back of the exam.

Total points for each problem will appear in the table below and in () beside each problem number. Do what is easiest first. AVOID glancing at anyone else’s paper during the exam. No means of communication between other students or outside parties is allowed. **The honor code is in effect.**

You must do all the problems on this test.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Max Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Short Answer</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Capacitors</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E & V</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>
1) Short Answer (17 points)(Show Your Work!)

a) If a 0.04 kg particle with charge 2.6 C is placed in an electric field, E=2.7 (N/C) and then released, how fast is the particle moving after a time t = 2.0 sec? (at t=0, the particle is at rest)

\[v = \frac{2.6 \cdot 2.7 \cdot 2.0}{0.04} = 351 \text{ m/s} \]

b) What is the Force/unit length) on a infinitely long wire with linear charge density +1.2 mC/m if it is 0.3 meters away and parallel to an infinitely long wire with linear charge density +1.2 mC/m?

Is this force attractive or repulsive with respect to the other wire? (3) [likes repel]

\[F/\text{length} = 86400 \text{ N/m} \]

\[\frac{F}{l} = \frac{(1.2 \times 10^{-3} \text{ C/m})^2 (9 \times 10^9 \text{ N C}^2)}{(0.3 \text{ m})} \]

\[= 86400 \text{ N/m} \]

c) A conducting spherical shell of inner radius \(R_1 \) and outer radius \(R_2 \)

has a charge of +2Q placed at its center and a net charge of +3Q placed on it (that is, the sum of the inner surface charge and the outer surface charge is +3Q). What is the surface charge density on the inner surface of the conducting shell at \(R_1 \)? Explain your reasoning.

(Hint: Remember what E is inside a conductor, and that E is a result of total enclosed charge.)

\[\sigma \text{ at } R_1 = \frac{2Q}{4\pi R_1^2} \]

\[+3Q \text{ net charge on the conductor} \]
2) Capacitors (Show Your Work!)

a) Calculate the equivalent capacitance between points A and B assuming that all the capacitors are initially uncharged. Now, if a 20.0 V battery is used between points A and B to charge the capacitors up, what is the charge on the 3.0 pF capacitor after it is charged up?

\[
C_{AB} = 3.39 \text{ pF} \quad (5)
\]

\[
Q \text{ (on 3pF)} = 19.4 \text{ pC} \quad (5)
\]

\[
V_{CD} = \frac{Q_{CD}}{C_{CD}} = \frac{67.8 \text{ pC}}{10.5 \text{ pF}} = 6.46 \text{ V}
\]

\[
= V \text{ across 3pF}
\]

\[
Q_{3 \text{pF}} = 6.46 \text{ V} \cdot 3 \text{ pF} = 19.4 \text{ pC}
\]

\[
Q_{AB} = 67.8 \text{ pC} = Q_{CD}
\]

b) Now, the battery is removed, but the charge remains on the capacitors. If an uncharged 6.0 pF capacitor is now hooked up between points A and B, what is the charge on the 3.0 pF capacitor at electrostatic equilibrium?

\[
Q_{\text{Before}} = Q_{\text{After}}
\]

\[
A \rightarrow \frac{10.5 \text{ pF}}{5.0 \text{ pF}} \rightarrow A
\]

\[
V_{AB} = \frac{67.8 \text{ pC}}{9.39 \text{ pF}} = 7.22 \text{ V}
\]

\[
V_{AB} = Q_{3 \text{pF}} \text{ (see above!)}
\]

\[
(19.4 \text{ pC}) \left(\frac{7.22 \text{ V}}{20 \text{ V}} \right) = 7 \text{ pC}
\]
3) Force and Potential (20 points Show Your Work!)
3 charged, conducting spheres are arrayed at the corner of an equilateral triangle as shown below:

The charge on each is:
Q1 = -4.0 nC
Q2 = -2.0 nC
Q3 = 5.0 nC

What is the Electric Field at point P at the center of the triangle due to the three charges?

\[E_1 = 6.746 \text{ N/C}(4) \left(\hat{i} + 0 \right) \]
\[E_2 = 6.746 \text{ N/C}(2) \left(\sin 30^{\circ} \hat{i} + \cos 30^{\circ} \hat{j} \right) \]
\[E_3 = 6.746 \text{ N/C}(5) \left(\sin 30^{\circ} \hat{i} - \cos 30^{\circ} \hat{j} \right) \]

\[6.746 \text{ N/C} \left[4 + 1 - 2.5 \hat{i} + (0 + 1.73 + 4.33) \hat{j} \right] \]

What is the Electric potential at a point P? How much work would have to be done to bring in a charge of 6.0 nC from infinity to point P?

\[V = \left(9 \times 10^9 \text{ Nm}^2/\text{C}^2 \right) \left(-4 \text{ nC} - 2 \text{ nC} + 5 \text{ nC} \right) \]

\[1.155 \text{ V} \]

\[V \propto = 0 \]
\[V_{@ P} = (6 \times 10^{-9} \text{ C}) \left(-7.8 \text{ Nm/C} \right) = -46.8 \text{ nJ} \]

\(DU \) negative \(E \) did the work!
Physics 116b Test 1 September 21, 2004

Name: Test D Seat:

This is a 50 minute, closed book examination. Put answers in the boxes provided (if any). If numerical answers are needed, you must include units. Any work needed to justify the answer must be shown in the space provided, or as indicated on a separate piece of paper or elsewhere on the test. A correct answer without the necessary justifying work may not receive any credit. You may tear the formula sheet off the back of the exam.

Total points for each problem will appear in the table below and in () beside each problem number. Do what is easiest first. AVOID glancing at anyone else’s paper during the exam. No means of communication between other students or outside parties is allowed. The honor code is in effect.

You must do all the problems on this test.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Max Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Short Answer</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Capacitors</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E & V</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>
1) Short Answer (17 points)(Show Your Work!)

a) If a 0.03 kg particle with charge 2.5 C is placed in an electric field, E=2.5 (N/C) and then released, how fast is the particle moving after a time t = 1.7 sec? (at t=0, the particle is at rest)

\[v = \frac{(2.5 \text{ C})(2.5 \text{ m}^2/\text{C})(1.7 \text{ s})}{0.03 \text{ kg}} = 354 \text{ m/s} \]

b) What is the Force/(unit length) on a infinitely long wire with linear charge density +1.5 mC/m if it is 0.6 meters away and parallel to an infinitely long wire with linear charge density -1.5 mC/m? Is this force attractive or repulsive with respect to the other wire?(3)

\[F/\text{length} = \frac{G \times 10^{-9} \text{ N} \text{ m}^2/\text{C}^2}{(0.6 \text{ m})} \left(1.5 \times 10^{-2} \text{ C} \right) \left(2 \right) = 6.7494 \text{ N/m} \]

c) A conducting spherical shell of inner radius R1 and outer radius R2 has a charge of -2Q placed at its center and a net charge of +3Q placed on it (that is, the sum of the inner surface charge and the outer surface charge is +3Q). What is the surface charge density on the inner surface of the conducting shell at R1? Explain your reasoning. (Hint: Remember what E is inside a conductor, and that E is a result of total enclosed charge.)

\[\sigma \text{ at R}_1 = \frac{+2Q}{4\pi(R1)^2} \]
2) Capacitors (Show Your Work!)

a) Calculate the equivalent capacitance between points A and B assuming that all the capacitors are initially uncharged. Now, if a 15.0 V battery is used between points A and B to charge the capacitors up, what is the charge on the 3.0 pF capacitor after it is charged up?

\[
C_{AB} = 2.48 \text{ pF} \quad (5)
\]
\[
Q (on \ 3\text{pF}) = 6.18 \text{ pC} \quad (5)
\]

\[
\frac{1}{4} + \frac{1}{x} = \frac{1}{2.54 \text{ pF}} = \frac{1}{2 \text{FF}F}
\]

\[
C_{CD} = 6.54 \text{ pF}
\]

\[
\frac{1}{x} = \frac{1}{\text{4FF}F} + \frac{1}{6.54 \text{ pF}} = 2.48 \text{ pF} \quad Q_{AB} = 15.0V (2.48 \text{ pF}) = 37.2 \text{ pC} = Q_{CD} \quad V_{CD} = \frac{37.2 \text{ pC}}{6.54 \text{ pF}} = 5.69 \text{ V}
\]

b) Now, the battery is removed, but the charge remains on the capacitors. If an uncharged 2.0 pF capacitor is now hooked up between points A and B, what is the charge on the 3.0 pF capacitor at electrostatic equilibrium?

\[
Q (on \ 3\text{.0pF}) = 3.42 \text{ pC} \quad (5)
\]

\[
V_{AB} = \frac{37.2 \text{ pC}}{4.48 \text{ pF}} = 8.30 \text{ V}
\]

notice above \(Q_{3\text{FF}F} \approx 15 \text{0V}! \)

so \(Q_{After} = Q_{3\text{FF}F} \frac{V_{After}}{V_{Before}} \)

\[
= 6.18 \text{ pC} \left(\frac{8.30 \text{ V}}{15.0 \text{ V}} \right) = 3.42 \text{ pC}
\]
3) Force and Potential (20 points Show Your Work!)

3 charged, conducting spheres are arrayed at the corner of an equilateral triangle as shown below:

The charge on each is:
- Q1 = -4.0 nC
- Q2 = -1.0 nC
- Q3 = 3.0 nC

What is the Electric Field at point P at the center of the triangle due to the three charges?

\[
\begin{align*}
E_1 &= 6.746 \text{N/C} \left(4 \left(- \cos 30^\circ \hat{\mathbf{E}} + \sin 30^\circ \hat{\mathbf{J}}\right) \right) \\
E_2 &= 6.746 \text{N/C} \left(1 \left(\cos 30^\circ \hat{\mathbf{E}} + \sin 30^\circ \hat{\mathbf{J}}\right) \right) \\
E_3 &= 6.746 \text{N/C} \left(3 \left(0 \hat{\mathbf{E}} + \hat{\mathbf{J}}\right) \right)
\end{align*}
\]

\[
E_{\text{for 1 nC}} = \frac{6.746 \text{N}}{\text{C}}
\]

What is the Electric potential at a point P? How much work would have to be done to bring in a charge of -3.0 nC from infinity to point P?

\[
V = \left(9 \times 10^9 \frac{\text{C}^2}{\text{N} \cdot \text{m}^2}\right) \left(-4 \text{nC} - 1 \text{nC} + 3 \text{nC}\right) \frac{1}{1.155 \text{m}}
\]

\[
V = -15.58 \frac{\text{Nm}}{\text{C}}
\]

\[
u_{\infty} = 0
\]

\[
u_{P} = \frac{1}{\text{C}} \left(-3 \text{nC}\right) \left(-15.6 \frac{\text{Nm}}{\text{C}}\right) = 46.75 \text{nJ}
\]

took energy to bring it to P